

4

Universitas Indonesia

CHAPTER 2

THEORITICAL BACKGROUND

This chapter will mention some theoretical notions in computer engineering that

are connected with this thesis work. Those will include the theory of synchronous

groupware in computer supported collaborative work (CSCW), development

process in software engineering that the system wants to cover, and distributed

systems issues. Further, this chapter will also mention some available technology

and tools to develop a synchronous groupware, as well as some examples of

synchronous groupware available.

2.1. Fundamental Issues of Synchronous Groupware for CSCW

Groupware is defined by Ellis, Gibbs and Rein [5] as “computer-based systems

that support groups of people engaged in a common task (or goal) and that

provide an interface to a shared environment”. The concept common task and a

shared environment are fundamental in this definition. Thus, this excludes multi

user systems whose users may not share a common task. The definition does not

specify that the users be active simultaneously. Groupware that specifically

supports simultaneous activity is called real-time groupware; otherwise, it is non-

real-time groupware [5].

There are some basic/general aspects/characteristics of a groupware system for

Computer Supportive Collaborative Work (CSCW) described by Terzis et al. [24]:

communication strategy, coordination, distribution, scalability, openness, web

exploitation and some non-functional characteristics.

2.1.1. Communication Strategy

Communication strategy refers to different ways of exchanging information.

There are two communication strategies regarding the time of communication:

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

5

Universitas Indonesia

synchronous and asynchronous. Some of the groupware applications support only

synchronous (e.g. audio and video conferencing), some only support

asynchronous, and some both.

Groupware can be differentiated in time and space considerations as shown in

 Figure 1, while this thesis will focus on the same time different place area, namely

Synchronous Distributed Interaction.

Furthermore, synchronous communication can be differentiated into loosely

coupled and tightly coupled. Tightly coupled synchronous groupware implement

the principle WYSIWIS (What You See Is What I See). In this principle, every

user will have the exactly same view of the software using a shared focus, or

simply translated as seeing the same computer screen together. There is another

improvement of this principle, which is relaxed WYSIWIS, where users in the

same session might have a different view of the artifact although the information

is just the same.

TIME

Same Time Different Time

Same Place

Face-to-face interaction (Spon-
taneous collaborations, formal

meetings, classrooms)

Asynchronous interaction
(Design rooms, Project

scheduling)

S
P

A
C

E

Distributed

Synchronous distributed
Interaction (Video conferenc-
ing, net meeting, phone calls)

Asynchronous distributed
Interaction (Emails, writing,

voice mails, fax)

Figure 1. Time Space Taxonomy [5]

2.1.2. Coordination

Coordination refers to the organization of user interactions. Different group

processes require different coordination policies, from flexible ones (e.g.

brainstorming session) to rigid ones (e.g. workflow automation) [24].

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

6

Universitas Indonesia

2.1.3. Distribution

Distribution refers to the physical location of the group members. The distribution

policies manage from physically collocated, to worldwide distributed groups [24].

2.1.4. Scalability

Scalability refers to the different group sizes that an application supports. It can

range from a few users (e.g. email) to a few thousands of users (e.g. web

conferencing) [24].

2.1.5. Openness

Openness refers to the flexibility of a system in integrating other applications,

working on different hardware platforms, and the use of different concurrency

control and awareness mechanisms [24].

2.1.6. Web exploitation

The Web provides a shared information space and supports basic collaboration. Its

success, in combination with the usual failures of groupware systems, led to it

being considered as an appropriate basis for groupware applications [24]. Thus

exploitation of the Web becomes an important aspect of groupware [24].

2.1.7. Additional non-functional characteristics

Other non-functional characteristics include things like fault-tolerance, security,

safety, integrity, etc [24]. The support of these characteristics and their flexibility

differs significantly in the various applications even within the same category

 [24].

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

7

Universitas Indonesia

2.2. Common Functionalities/Application of CSCW

This section describes several types of groupware applications and their

associated design options. Comparing those design options across applications

yields interesting new perspectives on well-known applications. Also, in many

cases, these systems can be used together, and in fact, are intended to be used in

conjunction. For example, group calendars are used to schedule

videoconferencing meetings, multi-player games use live video and chat to

communicate, and newsgroup discussions spawn more highly-involved

interactions in any of the other systems.

2.2.1. Asynchronous groupware

Below are some means of applications that are categorized as asynchronous

groupware applications [www8]:

� Email is by far the most common groupware application (besides of

course, the traditional telephone). While the basic technology is designed to

pass simple messages between 2 people, even relatively basic email

systems today typically include interesting features for forwarding

messages, filing messages, creating mailing groups, and attaching files with

a message. Other features that have been explored include: automatic

sorting and processing of messages, automatic routing, and structured

communication (messages requiring certain information).

� Newsgroups and mailing lists are similar in spirit to email systems except

that they are intended for messages among large groups of people instead

of 1-to-1 communication. In practice the main difference between

newsgroups and mailing lists is that newsgroups only show messages to a

user when they are explicitly requested (an "on-demand" service), while

mailing lists deliver messages as they become available (an "interrupt-

driven" interface).

� Workflow systems allow documents to be routed through organizations

through a relatively-fixed process. A simple example of a workflow

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

8

Universitas Indonesia

application is an expense report in an organization: an employee enters an

expense report and submits it, a copy is archived then routed to the

employee's manager for approval, the manager receives the document,

electronically approves it and sends it on and the expense is registered to

the group's account and forwarded to the accounting department for

payment. Workflow systems may provide features such as routing,

development of forms, and support for differing roles and privileges.

� Hypertext is a system for linking text documents to each other, with the

Web being an obvious example. Whenever multiple people author and link

documents, the system becomes group work, constantly evolving and

responding to others' work. Some hypertext systems include capabilities for

seeing who else has visited a certain page or link, or at least seeing how

often a link has been followed, thus giving users a basic awareness of what

other people are doing in the system—page counters on the Web are a

crude approximation of this function. Another common multi-user feature

in hypertext (that is not found on the Web) is allowing any user to create

links from any page, so that others can be informed when there are relevant

links that the original author was unaware of.

� Group calendars allow scheduling, project management, and coordination

among many people, and may provide support for scheduling equipment as

well. Typical features detect when schedules conflict or find meeting times

that will work for everyone. Group calendars also help to locate people.

Typical concerns are privacy (users may feel that certain activities are not

public matters), completeness and accuracy (users may feel that the time it

takes to enter schedule information is not justified by the benefits of the

calendar).

� Collaborative writing systems may provide both realtime support and

non-realtime support. Word processors may provide asynchronous support

by showing authorship and by allowing users to track changes and make

annotations to documents. Authors collaborating on a document may also

be given tools to help plan and coordinate the authoring process, such as

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

9

Universitas Indonesia

methods for locking parts of the document or linking separately-authored

documents. Synchronous support allows authors to see each other's changes

as they make them, and usually needs to provide an additional

communication channel to the authors as they work (via videophones or

chat).

2.2.2. Synchronous groupware

Synchronous application in a groupware basically means that a single application

can be used in a multi user environment as if the application runs for a single user.

There are some synchronous applications categories [www8]:

� Shared whiteboards allow two or more people to view and draw on a

shared drawing surface even from different locations. This can be used, for

instance, during a phone call, where each person can jot down notes (e.g. a

name, phone number, or map) or to work collaboratively on a visual

problem. Most shared whiteboards are designed for informal conversation,

but they may also serve structured communications or more sophisticated

drawing tasks, such as collaborative graphic design, publishing, or

engineering applications. Shared whiteboards can indicate where each

person is drawing or pointing by showing telepointers, which are color-

coded or labeled to identify each person.

� Video communications systems allow two-way or multi-way calling with

live video, essentially a telephone system with an additional visual

component. Cost and compatibility issues limited early use of video

systems to scheduled videoconference meeting rooms. Video is

advantageous when visual information is being discussed, but may not

provide substantial benefit in most cases where conventional audio

telephones are adequate. In addition to supporting conversations, video

may also be used in less direct collaborative situations, such as by

providing a view of activities at a remote location. The Usability First site

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

10

Universitas Indonesia

maintains a bibliography of papers on the user interface design of video

communications systems.

� Chat systems permit many people to write messages in real-time in a

public space. As each person submits a message, it appears at the bottom of

a scrolling screen. Chat groups are usually formed by having listing chat

rooms by name, location, number of people, topic of discussion, etc. Many

systems allow for rooms with controlled access or with moderators to lead

the discussions, but most of the topics of interest to researchers involve

issues related to un-moderated realtime communication including:

anonymity, following the stream of conversation, scalability with number

of users, and abusive users. While chat-like systems are possible using non-

text media, the text version of chat has the rather interesting aspect of

having a direct transcript of the conversation, which not only has long-term

value, but allows for backward reference during conversation making it

easier for people to drop into a conversation and still pick up on the

ongoing discussion.

� Decision support systems are designed to facilitate groups in decision-

making. They provide tools for brainstorming, critiquing ideas, putting

weights and probabilities on events and alternatives, and voting. Such

systems enable presumably more rational and even-handed decisions.

Primarily designed to facilitate meetings, they encourage equal

participation by, for instance, providing anonymity or enforcing turn-

taking.

� Multi-player games have always been reasonably common in arcades, but

are becoming quite common on the internet. Many of the earliest electronic

arcade games were multi-user, for example, Pong, Space Wars, and car

racing games. Games are the prototypical example of multi-user situations

"non-cooperative", though even competitive games require players to

cooperate in following the rules of the game. Games can be enhanced by

other communication media, such as chat or video systems.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

11

Universitas Indonesia

2.3. Awareness in Synchronous Groupware

“Awareness” plays an important role in CSCW systems. Without awareness, there

would be no collaboration. The basic meaning of awareness in collaborative

systems is to know who the collaborators are, what they are doing, what they have

done and what they want to do [9]. Hence, it is also called group awareness. With

group awareness, the collaborators have a basic idea of his or her collaborating

working environment that he/she is using and contributing.

Traditional CSCW systems apply four kinds of interleaved awareness [9] :

� Workspace awareness is about who is present in the workspace, where they

are, and what they are doing;

� Informal awareness means that the general sense of who is around and

what they are depending on;

� Social awareness is the information that a person maintains about others in

a social or conversational context; and

� Group-structured awareness involves knowledge about such things as

people’s roles and responsibilities, their positions on an issue, their status,

and group process.

2.3.1. WYSIWIS [9]

WYSIWIS means What You See Is What I See. This is the aim of most

synchronous CSCW systems. Synchronous systems do not only want to support

the same views to the shared documents but also the shared views of each

collaborator, because in a face-to-face environment, all the collaborators share the

views to the environment.

WYSIWIS is one of the prevalent approaches in designing systems to support

synchronous interaction and cooperation, that is, it provides the users with all their

individual and familiar tools. WYSIWIS emphasizes that collaboration requires

the commonalities among the collaborators.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

12

Universitas Indonesia

Evidently, traditional CSCW systems emphasize more on WYSIWIS then

WYSINWIS. WYSIWIS is the aim of explicit awareness. The problem is that we

still need to group awareness when WYSIWIS cannot be practically applied.

Therefore, relaxed WYSIWIS, What You See is What I think You See

(WYSIWITYS, and What You See is Not What I See (WYSINWIS) are proposed

to the CSCW world. They are all mechanisms that can be used to support implicit

awareness.

2.3.2. Relaxed WYSIWIS [9]

WYSIWIS enforces strict synchronization of different user views onto a shared

workspace. Relaxed WYSIWIS coupled with techniques for promoting multi user

awareness and concurrency control mechanisms for interleaving users actions

have focused on enabling the possibility of collaboration while retaining a high

degree of individual autonomy. WYSIWIS supports that different users at

different displays were forced to see the same part of a virtual workspace. Relaxed

WYSIWIS was led by a less strictly coupled approach where different user’s

views could diverge.

Although the WYSIWIS idealization recognizes that efficient reference to

common objects depends on a common view of the work at hand, WYSIWIS was

found to be too limiting and relaxed versions were proposed to accommodate

personalized screen layouts.

Relaxed WYSIWIS actually means that groupware should not always support full

or strict WYSIWIS principles at all time and all places, it should have flexible

choices for users to choose.

2.3.3. WYSINWIS [9]

WYSINWIS stands for What You See Is Not What I See. It is terminology to

emphasize the real collaboration among people in a group take different

responsibilities and have different rights.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

13

Universitas Indonesia

In reality, every person has his or her view to the world. They ask, serve, and

interact with the world in their different ways. WYSINWIS definitely does not

want to support the explicit awareness, but it still can support collaboration in an

efficient way. WYSINWIS will use the implicit awareness to help collaborators to

contribute in a collaborative work. WYSINWIS emphasizes that one user’s view

is not totally the same as others’ view on shared objects.

Actually, WYSINWIS touches another extreme point that emphasizes the

personalized view instead of shared view and role-based collaboration is the direct

way to support it.

� WYSIWIS emphasizes commonalities requirements in collaborative

environments and WYSINWIS emphasizes the personalities in the working

environments.

� WYSIWIS emphasizes the benefits of face-to-face meeting and

brainstorming for creative collaboration and WYSINWIS emphasizes the

benefits of efficient working when collaborators have clear rights and

responsibilities.

� WYSIWIS still has a long way to be satisfied by the users and WYSINWIS

has just begun noticed and has many potential applications.

� WYSIWIS coupling has two main disadvantages. It can lead to wars

whenever users are forced to share changes they do not want to share.

WYSIWIS requires the overhead of communicating all user changes to all

of the other users, which is inefficient, especially when the users do not

wish to share some of these changes.

� WYSINWIS does not have these disadvantages but does not have any of

the advantages of WYSIWIS either.

2.4. Collaborative Architecture

In software architecture, client and server architecture model distinguishes client

systems from server systems, which communicate over a computer network

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

14

Universitas Indonesia

 [www7]. A client-server application is a distributed system comprising both client

and server software [www7]. A client software process may initiate a

communication session, while the server waits for requests from any client

 [www7].

The distribution of the server and client basically can be differentiated into 2;

server based or centralized architecture and peer-to-peer or replicated architecture.

Between these 2 extremely different architectures, there is a hybrid or semi-

replicated architecture which combine both.

In client server component based software, architecture will determine the nature

of the components of the system and the placement of these components of

various users participating in collaborative session.

2.4.1. Centralized

In this architecture model, all users interact with one single program, which

resides on one of users’ workstation, as the only server. The program processes all

inputs and distributes the output to all users.

Figure 2. Centralized Architecture [1]

This architecture model is better usage when [1]:

� The computer on which the central program component executed is more

powerful than the other computer participating in the collaboration

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

15

Universitas Indonesia

� The central site is connected by fast network connections to all others site

� The user at the central site provides a proportionately large amount of input

� The numbers of users is large

2.4.2. Replicated

In this architecture model, the program is replicated on all of the users’

workstations and has the user interact with the local program replica. Therefore,

there are 1 user part and 1 server part in a single client workstation. This

architecture synchronizes the program replicas by broadcasting each user’s input

to all of them.

Figure 3. Replicated Architecture [1]

The basic advantage [1]:

� The replicas need not to share the complete state if programmer-defined

code is defined to multicast selected input events.

While the drawbacks are [1]:

� Each replicated operation must be idempotent (multiple executions

equivalent to single execution)

� Floor control is needed to ensure consistency (though in some cases

application specific operation can be used instead)

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

16

Universitas Indonesia

2.4.3. Hybrid (Semi-Replicated)

In this architecture model, the program can be replicated and also serve multiple

user interface component. Therefore there will be fewer servers than clients. All

servers will have to synchronize each other, while a client will only have to

communicate with its server.

Figure 4. Hybrid/Semi-Replicated Architecture [1]

Hybrid architecture can be varied into 2 [1]:

� Static: the architecture is fixed, who owns the replica and who should serve

he user interface

� Flexible/Dynamic

- Flexible at start-up. At start up, before start the users decide the configu-
ration.

- Flexible at run-time: if in the middle of session, users want to reconfig-
ure the architecture or the condition forced to do that.

Dynamic architecture is needed in pervasive collaboration (independent of

network, location, device, application used). In flexible at run time, for example,

when a user joins or leaves a session, some conditions to be considered in

changing the architecture are:

� Network connection

� Computer quality (powerful or not)

� Distribution of users

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

17

Universitas Indonesia

� Number of users

2.5. Component Based Groupware Models

Component-based software is aimed to increase the reusability and

interoperability of software. Component-based development aims at constructing

software artifacts by assembling prefabricated, configurable and independently

evolving building blocks, the so-called components [22]. Components are binary,

self-contained and reusable building blocks providing a unique service that can be

used either individually or in composition with the service provided by other

components [22]. A software component can be deployed independently and is

subject to composition by third parties [3].

Other definition comes from D’Souza and Wills [2], components is a “unit of

software that encapsulates its design and implementation and offers interfaces to

the outside, by which it may be composed with other components to form a larger

whole.”

The common (traditional) object-oriented software development aims at providing

reusability of object type definitions (object classes) at design and implementation

levels [3]. In contrast, component-based development aims at providing

reusability of components at deployment level [3]. Therefore, components in

component-based software development will represent functionality pieces that

are ready to be installed and executed in multiple environments [3].

Components are most useful if there is no need at all to understand their internal

program. If a component's implementation is fully hidden and all composition is

strictly based on the specification of the component's interfaces, then the

component can be replaced by a newer version or by one from a different source.

It is important that components come in a binary form ready for use, and not in

the form of a traditional machine-specific executable. To be automatically

composable, a component should come with machine-readable information on

which interfaces it uses [3].

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

18

Universitas Indonesia

Components, if seen as units that are acquired, deployed, and dynamically loaded

and linked, are rather like classes instead of objects. In theory it is possible to

unify objects and classes. Indeed, this has been done in a number of experimental

systems. If such objects are made persistent and self-contained (including all

required implementation facets), they can serve as components. In practice, this

unification leads to significant problems. The sharing of a single class by many

objects introduces the advantage of maintainability and consistency. However,

even classes are usually too tightly coupled with certain other classes to be useful

components. It is thus useful to group a set of related classes and possibly further

resources into a component. Instead of synthesizing new code to compose

components into larger units, it is often more useful to capture the composition

using objects—instances of classes that are carried by the used components. Such

a composition needs to be made persistent; the persistent objects form part of the

resources that come with a component.

Some issues to be considered for the design of component based groupware are

 [19]:

� How to recognize the likely requirements for extensibility and

composability that guide the design of component groupware architecture?

Component groupware should permit adjustment of systems depending on

the people to support, the task they perform, and the context in which the

task is performed. Similarly, when any of these factors evolves over time,

the supporting system should be able to be evolved along with it.

� Which types of components should be identified in component groupware

architecture and how should these types of components interact?

� Which mechanisms should be supported to compose a groupware system

from components? How to support composition by end-users as a form of

tailor-ability and how to support composition by programmers (during

design time, as a form of engineering)? Do we need different component

groupware architectures for these different types of composition? E.g., a

distinction similar to the distinction between Lego Duplo (large, easily

connectable meaningful bricks for small children, versus Lego Classic and

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

19

Universitas Indonesia

Lego Technic (small, more intricately connectable abstract bricks for older

engineering oriented children)?

� Which mechanisms (if at all) should be supported to extend a component-

based groupware system. Extension with components from various

vendors/parties introduces the requirements of third party composition, i.e.,

less opportunity to rely on integration testing to obtain a properly behaving

system. This is most severe when the composition is done by end-users

(e.g. click on "install new component" is all that is required from the end-

user?),

� How to use existing generic component-based platforms (such as

JavaBeans, COM+ and CORBA component model) and how should they

be extended in order to support engineering of component-based

groupware?

� How do design component groupware architectures that abstract from

distribution (and focus on intrasystem composability and interaction,

typically specified in terms of interfaces, calls and events). How to design

component groupware architectures that exhibit distribution (and focus on

inter-system interoperability and interaction, typically specified in terms of

protocols)? In the latter case, how does one decide, based on e.g.

requirements on response times and consistency, when and where to apply

a distributed, replicated or centralized architecture?

� How to design component groupware architectures primarily aimed at

supporting synchronous communication, versus those primarily aimed at

supporting asynchronous communication? How to combine them? Real-

time demands and consistency problems create extra requirements for

systems that support synchronous interaction. Record and replay facilities

(components?) may be needed in systems that have to support both

synchronous and asynchronous forms of interaction.

� Should component groupware architectures that include support for

synchronous interaction be targeted towards loosely-controlled

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

20

Universitas Indonesia

participation (MBone-style) tightly-controlled participation (Microsoft

NetMeetingstyle) in conferences, or both?

2.5.1. CORBA [www6]

CORBA is the acronym for Common Object Request Broker Architecture, OMG's

open, vendor-independent architecture and infrastructure that computer

applications use to work together over networks. Using the standard protocol

IIOP, a CORBA-based program from any vendor, on almost any computer,

operating system, programming language, and network, can interoperate with a

CORBA-based program from the same or another vendor, on almost any other

computer, operating system, programming language, and network.

CORBA applications are composed of objects, individual units of running

software that combine functionality and data, and that frequently (but not always)

represent something in the real world. Typically, there are many instances of an

object of a single type—for example, an e-commerce website would have many

shopping cart object instances, all identical in functionality but differing in that

each is assigned to a different customer, and contains data representing the

merchandise that its particular customer has selected. For other types, there may

be only one instance. When a legacy application, such as an accounting system, is

wrapped in code with CORBA interfaces and opened up to clients on the network,

there is usually only one instance.

The IDL interface definition is independent of programming language, but maps

to all of the popular programming languages via OMG standards: OMG has

standardized mappings from IDL to C, C++, Java, COBOL, Smalltalk, Ada, Lisp,

Python, and IDLscript.

This separation of interface from implementation, enabled by OMG IDL, is the

essence of CORBA - how it enables interoperability, with all of the transparencies

the creator claimed. The interface to each object is defined very strictly. In

contrast, the implementation of an object - its running code, and its data - is

hidden from the rest of the system (that is, encapsulated) behind a boundary that

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

21

Universitas Indonesia

the client may not cross. Client’s access objects only through their advertised

interface, invoking only those operations that that the object exposes through its

IDL interface, with only those parameters (input and output) that are included in

the invocation.

In CORBA, every object instance has its own unique object reference, an

identifying electronic token. Clients use the object references to direct their

invocations, identifying to the ORB the exact instance they want to invoke

(Ensuring, for example, that the books you select go into your own shopping cart,

and not into your neighbor's.) The client acts as if it's invoking an operation on the

object instance, but it's actually invoking on the IDL stub which acts as a proxy.

Passing through the stub on the client side, the invocation continues through the

ORB (Object Request Broker), and the skeleton on the implementation side, to get

to the object where it is executed.

The CORBA Component Model (CCM) provides a platform and language

independent component model. Although the standard model is still a work-in-

progress it defines e.g., mechanisms to discover the capabilities of a component,

to define provided and used interfaces, and an event mechanism. CCM

components are designed to be interoperable with Enterprise JavaBeans.

2.5.2. JavaBeans [6]

JavaBeans is Java’s component model. It allows users to construct application by

piecing components together either programmatically or visually (or both). The

support of visual programming makes component-based software development

truly powerful. The JavaBeans model is made up of architecture and API.

Together, these elements provide a structure so that components can be combined

to create an application. Components are provided with tools necessary to work in

the environment, and they exhibit certain behaviors that identify them as such.

One important aspect of this structure is containment. A container provides a

context in which components can interact.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

22

Universitas Indonesia

JavaBeans provide class and interface discovery as a mechanism to locate a

component at runtime and to determine its supported interfaces so that these

interfaces can be used by others. The component model also provides a

registration process for components to make itself and its interfaces known.

Dynamic (or late) binding allows components and applications to be developed

independently. An application does not have to include a component in the

development process in order to use it at runtime; it only needs to know what a

component is capable of doing. Dynamic discovery also allows developers to

update components without having to rebuild the application that use them. This

discovery process can also be used in design-time environment. The development

tool may be able to locate a component and make it available for use by the

designer.

An event is something of importance that happens at a specific point in time. An

event can take place due to user action or initiated by other means. Components

will send notifications to other object interest of that event.

Components must be able to participate in their container’s persistence

mechanism so that all components in the application can provide application-wide

persistence in a uniform way. This would be very important if reuse is one of the

developer concerns.

The component environment allows the individual components to control most of

the aspects of their visual presentation. The component is free to choose its visual

presentation, but layout should be design effectively as it is an important aspect in

visual presentation. The container and the components work together to provide a

single application that presents itself in a uniform fashion. The application appears

to be working as one unit, even though within the components development

model, the container and the components probably have been developed

separately by other developer.

The following is the advantages of using JavaBeans:

� Compact and easy components

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

23

Universitas Indonesia

� Portable. As it is built purely in Java, JavaBeans portal to any platform that

supports Java runtime environment

� Leverages the strengths of Java platform

� Flexible build-time component editors

2.5.3. DCOM [www4]

Microsoft COM (Component Object Model) technology in the Microsoft

Windows-family of Operating Systems enables software components to

communicate. COM is used by developers to create re-usable software

components, link components together to build applications, and take advantage

of Windows services. The family of COM technologies includes COM+,

Distributed COM (DCOM) and ActiveX Controls.

COM is used in applications such as the Microsoft Office Family of products. For

example COM OLE technology allows Word documents to dynamically link to

data in Excel spreadsheets and COM Automation allows users to build scripts in

their applications to perform repetitive tasks or control one application from

another.

Microsoft provides COM interfaces for many Windows application services such

as Microsoft Message Queuing (MSMQ) Microsoft Active Directory (AD) and

Windows Management and Instrumentation (WMI).

Microsoft recommends that developers use the .NET Framework rather than

COM for new development.

Microsoft Distributed COM (DCOM) extends the Component Object Model

(COM) to support communication among objects on different computers—on a

LAN, a WAN, or even the Internet. With DCOM, application can be distributed at

locations that make the most sense to customer and to the application.

Because DCOM is a seamless evolution of COM, the world's leading component

technology, developers can take advantage of existing investment in COM-based

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

24

Universitas Indonesia

applications, components, tools, and knowledge to move into the world of

standards-based distributed computing. DCOM handles low-level details of

network protocols so developers can focus on the real business: providing great

solutions to the customers.

This component object models permit the creation of composable systems. They

provide e.g., a binary standard for function calling between components, possibly

bridging network boundaries. Furthermore they have a provision to group

functions into interfaces, a way to dynamically discover the interfaces of a

component, and a mechanism to uniquely identify components and their

interfaces.

2.6. Component Based Groupware Study

Component based software has been chosen by some CSCW groupware

application to support tailorability. It is because basically, component can be

added at runtime. The following subchapter reviews 3 groupware systems which

implement component based software technology.

2.6.1. EVOLVE (1998) [20]

EVOLVE is developed using JavaBeans component model to implement the

search tool components and a modified JAVA BEANBOX DE as a platform for

the search tool application. The modifications of the DE were required to permit

run-tie tailorability of the application without having to dynamically generate and

compile Java code.

Tailoring emerged as a cooperative activity, mainly with two of the users asking

the h d, more technically inclined user to tailor special purpose search tools for

them. During the experiment, search tool configurations (compositions) were

automatically shared via a folder within the file system. The shared folder was

accessible for all users and all configurations stored there were shown in a menu

of the BEANBOX environment.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

25

Universitas Indonesia

The JAVASOFT BEANBOX could only maintain the component structure of one

local application during run-tie: It could not provide true distributed run-time

tailorability, e.g. with the power user remotely changing the configuration of the

running search tool on the machine of another user.. With the simple shared folder

mechanisms for distributing configurations, a user in principle had to shut down

the old search tool, wait for the changes to be made and then reload the newly

tailored search tool fi-om the folder.

The system could not support truly distributed applications. It is because

JavaBeans component model which does not easily support remote interaction in

distributed applications.

2.6.2. DreamObjects (2003) [16]

The described DreamObjects platform offers services for data distribution, data

consistency, concurrency control, and data persistency. DreamObjects is

implemented in Java.

It provides developers with a methodology on how to develop collaborative

applications and how to transform an existing single-user application into a

collaborative one.

The transparency is achieved by the class hierarchy for the shared data objects. Its

basic idea is to replace a developer-defined data object at runtime with a

substitute. After an initial configuration, a developer can use the substitute like a

local data object. The substitute hides the distributed actions that are necessary to

keep a shared data object consistent. The class hierarchy does not restrict a

developer, when implementing shared data objects. A developer can reuse

existing data classes by inheritance, as he has not to extend any platform-provided

classes. Additionally, he can feel free to compose data objects.

Application schemes for single-user as well as multi-user applications postulate a

clear separation of user interface objects and data objects. DreamObjects supports

this separation and offers a flexible notification service. A developer can use this

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

26

Universitas Indonesia

service to couple the user interface with the shared state. To be informed,

whenever a new data object is created or an existing one is removed, a developer

can define and register object-listeners. To track the modifications of a shared

data object, a developer can define and register call-listeners. Apart from the

normal callback mechanism, DreamObjects offers a mapping-based notification

service. With the mapping-based service a developer exactly can define the

information he is interested in and so avoids unnecessary events.

DreamObjects offers an object-based concurrency control scheme and a method

based. The offered schemes can be applied per shared object. With the object-

based one, a developer can implement floor control. Due to the nature of floor

control, a developer explicitly has to handle the requesting and releasing of the

floor. The method-based concurrency control scheme allows a developer to

achieve a maximum of concurrency. A developer can define sets of methods that

must be executed mutually exclusive. As DreamObjects supports composite data

objects, there can be inter-object dependencies and these sets are not limited to

one data object.

DreamObjects does not only support the common asymmetric and replicated

distribution scheme, it also supports two adaptive distribution schemes. One of

these distribution schemes adapts the distribution of a shared data object in

relation to a user’s working style.

DreamObjects supports two mechanisms to accommodate latecomers. One

replays how the current state was reached. As not every latecomer is interested in

a replay, DreamObjects also supports a direct state transfer. In both cases the

latecomer support is fault-tolerant, e.g. the site that supports a latecomer can leave

the session. It does not block the other participants in their work and works

completely decentralized, i.e. there is no well-known site that supports all

latecomers. As the latecomer support is completely integrated in the runtime

environment, DreamObjects completely relieves a developer from the task to

support the latecomer with a consistent state.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

27

Universitas Indonesia

DreamObjects is based on a completely decentralized architecture, which avoids

performance bottlenecks and makes the system much more reliable.

2.6.3. MACS (2000) [27]

The aim of this work was to develop a portable, flexible and scalable framework

for CSCW applications allowing an easy, efficient and fast creation of customized

components and thus the creation of a usage scenario specific system.

Portability is a key factor for easy deployment in a heterogeneous environment.

The development of MACS used Java 2 as an implementation platform. The

overall portability has already been a key factor during development, as MACS

was implemented in a heterogeneous environment with different members of the

development team working on Solaris, Linux and Windows based systems. The

only real problem area hereby is the hardware access as needed for audio/video

capture and playback. This problem is in parts solved by JMF, which at the

currently available stage of development still exhibits a number of limitations.

Regarding the second key factor, flexibility, the MACS framework excels. Very

different applications can easily be integrated into the framework and internal

modules allow to extend/supplement the capabilities of the framework. This

highly modular concept works well in practice and the configuration via the

provided configuration editor is easy to handle. The two level setup of system and

user specific configurations allows efficient system adaptation for different

deployment environments. Despite its flexibility MACS manages to maintain a

tight integration of its components.

The point of scalability of the framework has to be considered in two steps. First

the scalability of the control and second of the provided application modules. The

control is fairly scalable more so than, for example, ITU based systems. As

demonstrated by the measurements even large lecture/class room scenarios can be

efficiently supported. Further extensions to even larger scenarios are possible, but

may require implementation of some of the marked enhancements, as again

summarized in the outlook.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

28

Universitas Indonesia

A further issue regarding the scalability of sessions is the availability and support

by a suitable session controller module (especially regarding visualization. The

same applies to scalability issues for reliable network protocols supporting group

communication.

A further point of interest was the issue of interworking with other CSCW

systems. Here the two introduced interworking modules show that it is quite well

possible to provide such functionality within the MACS framework in a very

flexible way. While interworking has been successfully demonstrated the

limitations during interworking mainly caused by using a common (minimal)

denominator have as well been highlighted. These limitations have to be

considered for interworking scenarios. Here the advantages of interworking versus

other

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

29

Universitas Indonesia

CHAPTER 3

ARGUMENTATION

This chapter describes the problem specifically, its possible condition, and some

scenario to encounter the problem. In this chapter, the problem will be divided

into several parts to ease the design.

The synchronous groupware system has to provide flexible adaptation and tailor-

made configuration in the group collaboration.

Tailor-made configuration is including the selection of components and tools and

their configuration according to special group parameters (e.g. number of

members and their possible roles, openness of group) and scenarios (e.g.

brainstorming, design session, text reviewing).

Flexible adaptation is regarding the change of situations during a session (e.g.

allowing the creation of sub-groups) and behaviors of members (e.g. change of

floor control policy is due to multicultural background of members). The system

should be flexible enough to provide alternatives or to suggest alternatives

according to group parameters or profiles of participants.

3.1. Requirement Analysis

The future enterprise groupware applications need to be able to cover the whole

range of all groupware aspects in a way that is flexible and that can dynamically

change [24]. Or it can be broadly summarized in two categories: (a) increased

flexibility of groupware applications and (b) increased support of dynamism by

groupware technology [24]. To meet this requirement of enterprise groupware, we

will develop a highly flexible and tailorable framework for groupware.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

30

Universitas Indonesia

3.1.1. Communication Strategy

The system is intended to provide synchronous communication strategy. Because

the main aim of this system is to provide a synchronous collaboration work, same

time different place. This is translated into the use of available different tools and

application at the same time for the users who joined the same session. The

variety of tools and application will be described later. But it dos not mean that

the system will not use asynchronous communication, because asynchronous

communication will undeniably be needed to do the management issues.

R1. The system should bring a synchronous system strategy

R2. The system will be based on client server architecture. The idea of client

server architecture is by utilizing proxies in both sides, server and

client, so that the invocations of program can be done as if the

program is local.

R3. Communications between clients are based on client server architecture

Component based software is suitable to support software that has a high demand

of tailorability because component can be added modified or deleted at runtime.

Thus, we will design component based software. The communications of the

groupware is basically communications between its components.

R4. To support flexibility and tailor-ability, the system is build per object

component based.

Because the system is based on client system architecture, the software should be

separated between master and client.

R5. The program must be separated between master and client (GUI)

The components will be separated based on its functions.

R6. The system must be separated between program, data objects and user

interface objects components

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

31

Universitas Indonesia

3.1.2. Coordination

Coordination will be defined in some different way of work flow. The system will

differentiate applications based on their type. Either it will be highly active or

more to single person work and the others are just passive. The application will

also be classified into the resources needed and the interactivity.

We will classify the applications based on the type of work that the applications

can support.

R7. System will provide a list of applications for each phases of group work

R8. A group can choose from the list of applications, which one they want to

use in the working session at runtime

To provide a continuous coordination, a database to save the state of the work is

undeniably needed. The database will be hold by the main server. But the state of

running history will be stored in each replicated master.

R9. Main server will hold a database of every session

R10. The database will save automatically every 15 minutes

R11. Before a session start, a group may continue working on the previous

work stored in the database

R12. At the end of the session, user is asked whether he/she wants to save the

work locally.

In this system, authoring mechanism will be translated into the use of different

colors for each user. At session start up, the user is asked to choose 1 of at

maximum 7 available colors, while the moderator will always have the color black

automatically.

Every person will be differentiated by the color he/she choose. Different color is

implemented as the color in the user profile box, and in some applications; e.g.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

32

Universitas Indonesia

Brainstorming, Tele Pointer, Text Editor, Chalk Board. Therefore, it will be easier

to notice who writes/draws what in the artifact.

R13. Authoring is implemented by using different colors for each member in

the session.

3.1.3. Distribution

This system is aimed to give a highly distribution ability of the users. This

groupware is designed to give its service to spatially distributed (worldwide)

users.

According to Juzunovic and Dewan [13], it is found that:

� Under realistic conditions, a small number of users, high intra-cluster

network delays, and large output processing and transmission costs suitable

for the replicated architecture.

� While for large input size, the centralized architecture gives a better

performance.

� While high inter-cluster network delays is best uses hybrid architecture.

� But high input processing and transmission costs, low think times,

asymmetric processing powers, and logic-intensive applications favor both

the centralized and hybrid architectures.

According to the implementation of PASSENGER [26], the connection between

two continents, Asia and Europe, is not excellent. Learning from that experience,

this system should be design to mitigate network problem that might lead to

system’s performance reduction. Under this framework, the system is desired to

offer many different type of application; light, medium and heavy application. To

support flexibility, the system will allow a variable number of users in a session,

thus a suitable architecture upon this condition should also be considered.

Hybrid architecture is shown to provide the best design tradeoffs [21]. Thus in or

system the distribution architecture mainly will implement hybrid architecture.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

33

Universitas Indonesia

Only if all users join a session is located in the near area, the system implements

centralized architecture.

R14. The system can flexibly operate in centralized or hybrid/semi- replicated

architecture

R15. In a hybrid/semi-replicated, partitioning in the network is needed

R16. In 1 partition, there will be 1 replication.

During start up system will calculate cost of all variables concerning network

latency between server to client as well as client to client intra and inter region,

and processing power of each client. This information added with the information

of number of users and type of application used in a session, will determined type

of distribution architecture of the program.

R17. The system should be able to know the condition of the network

connection to and between its client

R18. The system should be able to know the condition of resource power of

each user

R19. The system is provided with the ability to give suggestion on distribution

architecture as well as optimal partitioning based on user network

condition and profile

R20. To give tailor-ability feature, the system will only give suggestion, while

the decision is depend on users.

Because the system will have a possibility to implement distributed system

strategy, in the case of hybrid/semi-replicated architecture, some basic problem of

distributed system should be considered. Distributed system should provide some

kinds of transparency; access, location, replication and fragmentation.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

34

Universitas Indonesia

R21. The system must be provided with all basic distribution transparency;

access transparency, location transparency, replication transparency

and fragmentation transparency

Simultaneous input of distributed system leads to a problem of data consistency.

R22. The system must be provided with data consistency control mechanism;

vector clock will be used to synchronize a shared object

Concurrency control should also be designed to mitigate the possibility of conflict

of from users.

R23. The system must be provided with concurrency control, which will be

translated into locking mechanism

Data replication leads to the problem of updating and synchronizing a shared

state.

R24. Update and synchronization protocol is needed

3.1.4. Scalability

The system will serve a variable number of sessions. The users in a session may

varies, according to the needs of the group owning the session. The system serves

a large scale of users worldwide. User should associate to at least a group. A

group should have profile regarding its organization, expertise, and purpose of

using the groupware. A group of users should register itself to the system before

asking a session it wishes to have.

R25. Every user must register to the system by giving the required profile

R26. Every group must register to the system by giving the required profile

R27. User and Group registration must be done before requesting a session

R28. A user can be associated to one or more group

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

35

Universitas Indonesia

Using computer mediation, in the brainstorming phase, a bigger group size can

bring better ideas than the small one [4] [7]. In those experiments, small size

group is represented by 6 or less people, while large size group is represented by

6-12 people [4] [7].

But in a more difficult task, that requires a more skilful knowledge, a group size

of 3 people brings a better outcome than the bigger one [15].

Therefore, according to those researches, a maximum of users in a session should

be different between applications. But if different applications restrict different

number of users in a session, it will lead to a problem of regrouping during

session. That is not what we are looking for.

For that reason, in this system, we will restrict the number of users in a session

range between 2 and 8 people.

R29. The number of users may range from 2 to 8 people

3.1.5. Openness

Basically, this system provides openness to its users. It means that everyone can

use its services. Every user who wish to use the advantages of this groupware

system, may register for a session, ask for the slot time, and he/she will be able to

use all functionality the system has. There is no restriction from which country

he/she comes, from which organization, or for what usage.

But the openness of a running session is determined by the session owner—who

register the session to the system before the session starts. The openness of a

session can be translated to:

� Whether the system can be seen at the system activity view. It means that

the system can either be seen by other people or invisible/anonymous

� Whether the system allow for late joiners. Allowing late joiners means that

when a session already runs, there is a possibility to other people to come

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

36

Universitas Indonesia

late to the session by either invited by the moderator, or asking permission

to the moderator to join the session.

Therefore, if a session status is invisible, there is no way that a late joiner may ask

permission to join a session. But in invisible mode, a moderator is able to invite a

user from his group to join the session late.

R30. System will allow session owner to define the session openness at session

registration

R31. A group will provide the characteristics of the session; openness

(allowing latecomers or not), role of each user in a group (moderator,

observer, custom), floor control model, which phase is the session

3.1.6. Web exploitation

This system will exploit the advantages of World Wide Web to support the

asynchronous part of the system. In the website, it will be shown:

� Who: name of group, name of member, the owner of the session

� What: the session name

� Where: the session member location

� When: the time slot and schedule of the session

� Why: type of session work phases

� How: the session characteristic

To provide security to the user, the system will allow session owner to set the data

of the session, and the group as only a code, or as invisible.

R32. The website should provide 5W&1H information of sessions and users

R33. The system has capacity of 10 session at a time

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

37

Universitas Indonesia

R34. The system has an open table showing a free slot of time that can be

chosen by a group. Each slot of time is defined as 1 hour

R35. A group may register (request) a session before the requested date and

time of the session or directly before the session start as long as there

are free slots

R36. A group can ask a session for one or more slot of time

3.2. Overview of the software

The basic demand to this groupware is to bring flexibility and tailor-ability

feature. In a short description, based on the criteria made in [18]1, this system can

be summarized as a groupware system that supports:

1. Functional Criteria, which specify what a user can expect of the system

regardless of its environmental or non-functional constraints:

� Messaging service

- Synchronous: instant messaging/chat application

- Asynchronous: offline notification regarding session management

� Conferencing and Electronic Meeting Systems (EMS) � supported

through video and audio conferencing

� Group Decision Support � supported through polling application

1 Please refer to “Survey and comparison of CSCW Groupware applications” [18] for each criteria
explanation

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

38

Universitas Indonesia

� Document Management � supported through the usage of database for

group’s documents

� Document Collaboration � supported by a history during the session runs

and authoring in artifact

2. Architectural Criteria, which define where and how the collaboration is

managed:

� Central Architecture (as a choice)

� Hybrid Architecture (as a choice)

3. Focus Criteria, which define the focal point of collaboration:

� Artifact centered

4. Time Criteria, which define the restrictions placed on the time of

collaboration:

� Synchronized Collaboration

5. Platform Criteria, which define the execution platform:

� Platform independent (Multi-platform) Collaboration

6. User involvement Criteria, which defines the level of involvement required

from the user:

� High, as the user is forced to work with a different interface that he is used

to in order to access the collaboration functionalities.

3.2.1. System Menu

This list of items will appear in the website of the system. It will be seen in the

webpage that can be accessed for the first time by users who wants to use the

groupware. This main menu will be placed in the left side of webpage. Every one

including guest can see this menu. The illustration can be seen on Figure 5.

� About

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

39

Universitas Indonesia

� Registration

- User registration:

o Username
o Password
o Email
o Location
o Function/Expertise

- Group registration

o Group name
o Group owner (username)
o Organization

- Session registration

o Group name
o Session name
o Time
o Duration

� Session Monitor

- Session table; with properties: session name, starting time, duration,
owner, number of member. If the session is in invisible mode, then no
information is written but an occupied time will appear.

- Join: to join a running session (only to a session which belong to the
group of which the user is a member)

� Download Client: a freeware client program (User Interface part) is

downloadable after User and Group registration

� How To: Manual of the program, FAQ

� Contact Us

� Login (if not yet Login)

- Username

- Password

� Logout (after Login)

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

40

Universitas Indonesia

Figure 5. Main Menu Interface on Website

After a user login successfully, another menu will appear, placed on top right of

the webpage.

� My Profile

- Name

- Password

- Email

- Location

- Function

- Photo

� My Group

- List of groups:

o Group name
o Organization
o List of member
o Add member (special menu for group owner)
o Confirm as member (special menu for group owner)
o Delete user (special menu for group owner)

- Join group

o Search group name

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

41

Universitas Indonesia

o Join button
o

� My Session

- My Session Table

o Session name
o Session owner
o Time begin
o Duration
o Join Button
o Invitation

- Owned session

o Session name
o Edit mode (invisible or not)
o Edit time
o Edit duration
o Invite user

- Message

 Figure 6 illustrates the user interface on webpage after successfully login. The

default view is on My Profile.

Figure 6. User Interface after Login

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

42

Universitas Indonesia

In My Session Table, which can be seen in Figure 7, each record represents a

session, which will have different color:

� Grey represents an ended session. No join button

� Red represents an ongoing session which not allows late joiners or a

session which already reach a maximum 8 people. No join button

� Green represents an ongoing session which allows late joiner. Join button

available. When a person click join button, session code will appear which

he/she will need to fill in the groupware to join this session. If he is already

invited, a session code will appear.

� White represents future date session. Join button available. When a person

click join button, a message will be sent to the owner. If he is already

invited, a session code will appear.

Group Name Session Name Start Time End Time Duration Owner Member(s) Code Invitation

CSCW Collaboration 17.8.08 9:00 17.8.08 10:15 1:15 MsYellow 5

CSCW Collaboration 20.8.08 9:00 20.8.08 10:45 1:45 Prima 8

UDE ABC 20.8.08 9:30 20.8.08 11:30 2:00 MrRed 5 sXr4

Computer Design 20.8.08 9:00 21.8.08 11:00 2:00 MrBlack 3

Computer Presentation 21.8.08 13:15 21.8.08 14:30 1:15 MsBlue 4

UDE DEF 30.8.08 10:30 30.8.08 13:30 3:00 MrBlack 7 t9k7

Join

Join

Figure 7. My Session Table

3.2.2. Session Menu

This is the list of menu which will be appeared in the groupware in a session. This

menu will appear on the top row on the groupware GUI. Illustration can be seen in

Figure 8.

� Application Tools

- Phase

o Brainstorming
o Presentation
o Collaboration
o Decision

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

43

Universitas Indonesia

- Application based on phase, an application may associate to more than
1 phase. It is a dropdown menu under Phase menu

o Instant Messaging/Chat
o Video conferencing
o Audio conferencing
o Presentation display
o Text Editor
o CAD Tools
o Polling
o Electronic Brainstorming (EBS)
o Chalk Board
o Tele-pointer

� (Session) Tools

- Leave: Leave the session for individual participant

- End: End the whole session, menu only available for moderator of the
session to end a session before the time is up

- Invite: menu only available for moderator of the session to invite new
user to join the session

Additions to Session Menu, there are prompt boxes that will appear:

� Messages from late joiner that wants to attend the session. This prompt box

will only appear to the Moderator. Moderator has choices either to Grant or

Reject.

� Message from the system to every user whether he/she wants to save the

work at the end of the session.

3.2.3. Workspace Functionality

Workspace functionalities use the biggest portion of display. It is below the

session menu. User functionality will be located at the left side, while the Public

workspace located in the right side. Unlike PASSENGER, in this system we do

not implement private workspace in addition to the public workspace. It is

because the use of private workspace often makes the data between public and

private not update. And worse, passive user may lost his awareness of the current

state in the public window, since he is busy working on his private window.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

44

Universitas Indonesia

Unlike PASSENGER, this system will only use video display for the floor holder,

while the passive members only shown by his/her name and properties (function,

location).

Below is the list of workspace functionality menu:

� User functionality

- Floor Holder display box, with name, function, location

- Lists of participants, with name, function, location

- Ask Floor

- Interrupt, enabled only for Member

- Ask to observe, enabled only for Member

- Interrupt permission, enabled only for Floor Holder

- Invite

- Instant Messaging/Chat, as an application that always available, but if
users do not want to use it, it can be hidden

� Public workspace

- Working space

- Tools, depends on application

- Commit button

- Abort button

- History

� Application per phase:

- Brainstorming

o Video conferencing
o Audio conferencing
o Electronic Brainstorming (EBS)
o Chalk Board

- Presentation

o Video conferencing
o Audio conferencing
o Presentation display
o Tele-pointer

- Collaboration

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

45

Universitas Indonesia

o Video conferencing
o Audio conferencing
o Text Editor
o CAD Tools
o Chalk Board
o Tele-pointer

- Decision

o Video conferencing
o Audio conferencing
o Presentation display
o Polling
o Chalk Board

In Figure 8, it can be seen the illustration of the user interface in a session. It is the

main interface of the synchronous groupware. At the top level, Menu of the

session, Phase (with dropdown menu Application), Floor Type, Tools and

Database are present. At the left side there is video of the Floor Holder together

with his/her identity. Below Floor Holder Identity there are list of user identity

that join the session. Each user will have different color represent with little box

with color nest to his/her name. Below it, there is Chat Box that is enabled all the

time. The biggest portion of the user interface is the working space at center point.

On the right side, there are tools correspond to the Application used in the session,

Logger (both HL and TL) with the tools Commit, Abort, Undo, Redo (using

icons). At the status bar at the bottom of the interface, user can see what the actual

activity of the session is.

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

46

Universitas Indonesia

Figure 8. Session GUI

Design of a flexible..., Prima Dewi Purnamasari, FT UI, 2008

