
BAB III

METODOLOGI PENELITIAN

3.1 ALUR PENELITIAN

Skema dibawah ini menjelaskan proses yang dilakukan untuk mencapai tujuan dalam penelitian ini secara garis besarnya. Hal-hal yang dilakukan pada setiap proses akan dijelaskan lebih detil berikutnya.

Gambar 3.1 Skema Alur Penelitian

3.2 PROSEDUR, ALAT, DAN BAHAN UNTUK MEMBUAT KARBON AKTIF

3.2.1 Bahan yang digunakan

Bahan utama yang perlu disiapkan untuk membuat karbon aktif pada penelitian ini adalah batubara Indonesia dari daerah Riau, Kalimantan Timur, dan Sumatera Selatan.

Tabel 3.1 Spesifikasi batubara yang digunakan

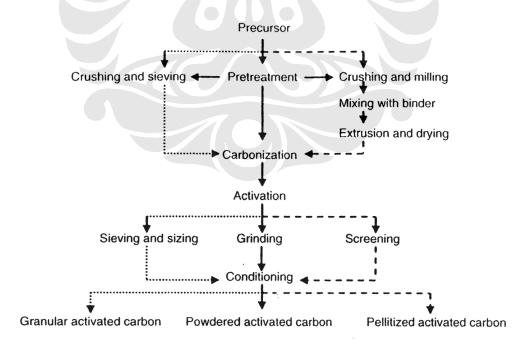
No.	Batubara	Inherent Moisture	Ash Content	Volatile Matter	Fixed Carbon	Total Sulphur
		%	%	%	%	%
1	Riau	5.59	17.96	34.51	41.94	1.74
2	Kalimantan Timur	6.97	0.52	39.7	58.82	0.2
3	Sumatera Selatan	3.13	6.39	29.21	61.27	0.83

Sumber: PT Superintending Company of Indonesia

Tabel di atas adalah spesifikasi batubara yang digunakan dalam penelitian untuk membuat karbon aktif.

3.2.2 Alat-alat yang digunakan

Tabel 3. 2 Alat-alat yang perlu disiapkan untuk membuat karbon aktif

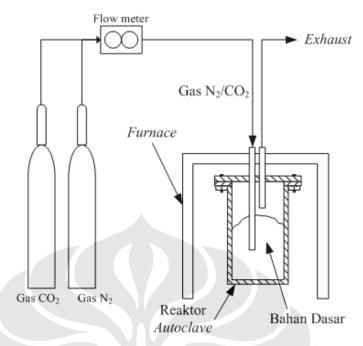

No.	ALAT	KEGUNAAN	GAMBAR	SPESIFIKASI
1	Heat Treatment Furnace/oven	Mengkondisikan temperatur bahan dasar untuk proses karbonisasi dan aktivasi	28/03/2008	Merk Hofmann, temperatur maksimum 1200 °C dengan laju kenaikan temperatur 600 °C/jam

2	Reaktor Autoclave	Wadah tempat bahan dasar pada saat proses karbonisasi dan aktivasi		Terbuat dari bahan stainless steel agar tahan terhadap temperatur tinggi
3	Timbangan digital	Untuk menimbang massa awal bahan dasar dan massa akhir setelah melalui proses aktivasi	2007	Merk : AND, beban maksimum 4000 g
4	Flowmeter	Mengatur jumlah debit aliran gas CO ₂ dan N ₂ dan menjaganya agar tetap konstan		Merk: Dwyer, range aliran 50-500 cm³/menit
5	Ayakan/sieve	Sebagai screening supaya ukuran granul seragam		Ukuran yang digunakan adalah 10 x 20 mesh
6	Gas N ₂ dan Gas CO ₂	Gas N ₂ untuk karbonisasi dan Gas CO ₂ untuk aktivasi	28/03/2008	Komposisi N_2 : 99.995 %, komposisi CO_2 : 99.8 %

7	Air distilasi	Menghilangkan kotoran yang berupa unsur-unsur non-karbon		
8	Palu/lumpang	Digunakan untuk menggerus karbon aktif supaya ukurannya sesuai yang diinginkan	28 (5.208)	
9	Pipa/tubing untuk jalur gas	Jalur gas masuk dan keluar		Pipa Tubing stainless steel diameter 1/8 in. beserta nut dan ferrule

3.2.3 Prosedur pembuatan karbon aktif

Prosedur pembuatan karbon aktif menggunakan metode yang ada pada skema di bawah ini.

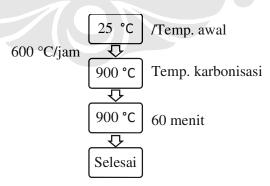

Gambar 3.2 Skema pembuatan karbon aktif dengan metode aktivasi fisika

Prosedur adalah:

- Bahan dasar yang berupa batubara pada awalnya berukuran besar, sehingga perlu dihancurkan hingga sesuai dengan ukuran yang diinginkan. Ukuran ini bebas, hanya untuk memastikan bahwa reaktor autoclave dapat dimuati sampel dengan massa 150 gram.
- 2. Bahan dasar kemudian dicuci dengan air distilasi. Tujuan pencucian adalah menghilangkan kotoran yang berupa unsur-unsur non-karbon, karena kemurnian bahan dasar berpengaruh pada hasil yang diperoleh. Setelah dicuci, bahan dasar kemudian dikeringkan dengan cara dianginanginkan.
- 3. Bahan dasar yang sudah siap kemudian dimasukkan ke dalam reaktor *autoclave*. Massa bahan dasar yang digunakan sebesar 150 g.
- 4. Proses karbonisasi sudah siap untuk dimulai. *autoclave* yang sudah berisikan bahan dasar kemudian dimasukkan ke dalam *furnace*, lalu siapkan jalur pemipaan gas N₂ dan gas buang (*exhaust*). Lihat gambar.

Gambar 3.3 Reaktor Autoclave Siap Untuk Proses Karbonisasi

Gambar 3.4 Skema Alat Pembuatan Karbon Aktif


5. Persiapan *furnace* untuk proses karbonisasi berupa seting pada *controller furnace* sebagai berikut :

Temperatur \rightarrow 900 °C

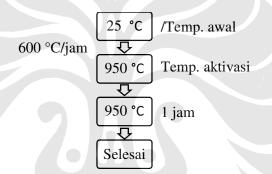
Laju kenaikan temperatur → 600 °C / jam

Temperatur konstan → 900 °C selama 60 menit

Seting pada *controller furnace* akan memberikan alur proses sebagai berikut :

Gambar 3.5 Skema Seting Controller Furnace Untuk Proses Karbonisasi

6. Gas N_2 dialirkan semenjak *furnace* masih dalam kondisi temperatur ruang. Debit aliran gas N_2 diatur sebesar 80 mL/menit.


- 7. Proses karbonisasi selesai. Tunggu sampai *furnace* melakukan pendinginan sampai dengan temperatur ruang.
- 8. Proses aktivasi mulai dilaksanakan. Dimulai dari mengganti jalur pipa gas N₂ menjadi gas CO₂. Gas CO₂ digunakan sebagai *activating agent* dalam proses aktivasi fisika.
- 9. Seting *controller furnace* untuk proses aktivasi berubah menjadi :

Temperatur \rightarrow 950 °C

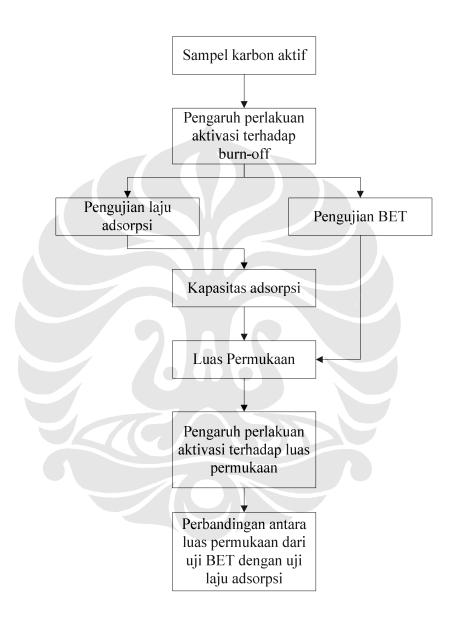
Laju kenaikan temperatur → 600 °C / jam

Temperatur konstan → 950 °C selama 1 jam

Seting pada *controller furnace* akan memberikan alur proses sebagai berikut :

Gambar 3.6 Skema Seting Controller Furnace Untuk proses aktivasi

- 10. Gas CO₂ dialirkan pada saat *furnace* menunjukkan temperatur 950 °C. Debit aliran gas diatur sebesar 80 mL/menit.
- 11. Proses aktivasi selesai. Tunggu sampai *furnace* melakukan pendinginan sampai dengan temperatur ruang.
- 12. Keluarkan sampel dari *autoclave*, kemudian timbang hasilnya.
- 13. Hitung *burn-off* sampel.
- 14. Karbon aktif kemudian digerus menggunakan lumpang dan setelah itu diayak untuk mendapatkan ukuran yang seragam.
- 15. Ulangi langkah-langkah diatas untuk lama proses aktivasi 1.5, 2, 2.5, dan 3 jam. Perbedaan prosedur yang dilakukan terletak pada seting *controller furnace*.


Karbon aktif kemudian diberi kode sampel untuk tiap jenis bahan dasar dan waktu aktivasi.

Tabel 3.3 Kode sampel karbon aktif

No.	Waktu Aktivasi	Kode sampel			
	menit	Riau	Kal-Tim	Sum-Sel	
1	60	RU1	KT1	SS1	
2	90	RU2	KT2	SS2	
3	120	RU3	KT3	SS3	
4	150	RU4	KT4	SS4	
5	180	RU5	KT5	SS5	

3.3 PENGOLAHAN DATA HASIL PERCOBAAN

Dibawah ini adalah skema alur proses pengolahan data yang dilakukan untuk mencapai tujuan penelitian.

Gambar 3.7 Skema alur proses pengolahan data dan analisanya

Setiap produk karbon aktif dianalisis laju adsorpsinya menggunakan alat uji adsorpi kinetik yang telah dikembangkan dan terdapat di laboratorium Teknik Pendingin Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia. Dengan alat ini, laju adsorpsi dan kapasitas dari sampel karbon aktif dapat diketahui. Luas permukaan dari tiap sampel karbon aktif dapat diketahui dari nilai kapasitas adsorpsi.

Pengujian BET juga dilakukan untuk mendapatkan nilai luas permukaan sebagai pembanding terhadap nilai permukaan yang didapat dari uji adsorpsi. Pengujian BET dilakukan di Direktorat Pengolahan Bagian Penelitian & Laboratorium Pertamina di Jakarta.

Karbon aktif komersial dengan merek dagang *Carbotech* digunakan sebagai pembanding atas hasil pembuatan karbon aktif. Pengujian BET dan laju adsorpsi dilakukan untuk mengetahui nilai luas permukaan karbon aktif ini.