ANALISA EFEK SECONDARY FLOW PADA PIPA BULAT DAN KOTAK

TUGAS AKHIR

Oleh

PAIAN OPPU TORRYSELLY 0405220412

TUGAS AKHIR INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

DEPARTEMEN TEKNIK MESIN
FAKULTAS TEKNIK
UNIVERSITAS INDONESIA
GENAP 2007/2008

PERNYATAAN KEASLIAN TUGAS AKHIR

Saya menyatakan dengan sesungguhnya bahwa Tugas Akhir dengan judul:

ANALISA EFEK SECONDARY FLOW PADA PIPA BULAT DAN KOTAK

Dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada program studi Teknik Mesin Fakultas Teknik Universitas Indonesia, sejauh yang saya ketahui bukan merupakan tiruan atau duplikasi dari Tugas Akhir yang sudah dipublikasikan dan atau pernah dipakai untuk mendapatkan gelar kesarjanaan di lingkungan Universitas Indonesia, maupun di Perguruan Tinggi atau Instansi manapun, kecuali bagian sumber informasinya dicantumkan sebagai mana mestinya.

Depok,11 Juli 2008

Paian Oppu Torryselly 0405220412

PENGESAHAN

Tugas Akhir dengan judul:

ANALISA EFEK SECONDARY FLOW PADA PIPA BULAT DAN KOTAK

Dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana teknik pada departemen Teknik Mesin Fakultas Teknik Universitas Indonesia dan disetujui untuk diajukan dalam sidang ujian Tugas Akhir tanggal 4 Juli 2008 dan dinyatakan memenuhi syarat/sah sebagai Tugas Akhir pada Departemen Teknik Mesin Universitas Indonesia.

Depok,11 Juni 2008 Dosen Pembimbing

DR. Ir. Yanuar, M.Eng., M.Sc

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada:

DR. Ir. Yanuar, M.Eng, M.Sc.

Selaku dosen pembimbing yang telah meluangkan waktu untuk memberi pengarahan, diskusi dan bimbingan dan persetujuan sehingga tugas akhir ini dapat terselesaikan dengan baik

KATA PENGANTAR

Puji sykur penulis panjatkan ke hadirat Tuhan Yang Maha Esa, atas limpahan rahmatnya penulis dapat menyelesaikan tugas akhir ini.

Laporan Tugas Akhir ini disusun untuk memenuhi salah satu syarat kelulusan dan memperoleh gelar Sarjana Teknik (ST) pada Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia

Penyusun menyadari bahwa laporan Tugas Akhir ini tidak dapat terwujud tanpa bantuan berbagai pihak baik materiil maupun spirituil, untuk itu pada kesempatan ini penulis ingin mengucapan terima kasih kepada :

- Bapak Prof. Dr. Gumilar R.Soemantri, selaku Rektor Universitas Indonesia
- 2. Bapak Prof. Dr. Ir. Bambang Sugiarto, M.Eng, selaku Dekan Fakultas Teknik Universitas Indonesia.
- 3. Bapak Dr. Ir. Harinaldi, M.Eng, selaku Ketua Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia
- 4. Bapak Dr.Eng. Ir. Yanuar, M.Sc., M.Eng, selaku dosen pembimbing
- Seluruh Dosen dan Karyawan Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia yang telah memberikan ilmu dan pelayanannya.

DAFTAR ISI

	Halamar
JUDUL	i
PERNYATAAN KEASLIAN SKRIPSI	ii
PENGESAHAN	iii
UCAPAN TERIMA KASIH	iv
ABSTRAK	V
ABSTRACT	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	ix
DAFTAR TABEL	xi
DAFTAR LAMPIRAN	xiii
DAFTAR SIMBOL	xiv
BAB I PENDAHULUAN	1
1.1 LATAR BELAKANG MASALAH	1
1.2 TUJUAN PENELITIAN	3
1.3 PEMBATASAN MASALAH	3
1.4 METODE PENELITIAN	4
1.5 SISTEMATIKA PENULISAN	6
BAB II DASAR TEORI	7
2.1 DEFINISI FLUIDA	7
2.1.1 Fluida Newtonian	7
2.1.2 Fluida Non-Newtonian	8
2.2 SIFAT-SIFAT FLUIDA	9
2.2.1 Density	9
2.2.2 Viscositas	10
2.2.3 Bilangan Reynolds	11
2 3 ALIRAN FLUIDA	12

2.3.1 Aliran Laminar dan Turbulen	13
2.3.2 Koefisien Gesek	14
2.4 PERSAMAAN ALIRAN FLUIDA	15
2.4.1 Laju Aliran Volume	15
2.4.2 Distribusi kecepatan	16
2.4.3 Persamaan-Persamaan Gerak untuk Fluida Viskos	17
2.4.4 Deformasi Pada Sebuah Elemen Fluida	18
2.4.5 Vortisitas dan Sirkulasi	20
2.4.6 Perubahan energi untuk fluida tak mampu mampat	20
BAB III DESKRIPSI ALAT DAN PROSEDUR PENGUJIAN	21
3.1 RANCANGAN ALAT PENGUJIAN	21
3.2 PERALATAN PENGUJIAN	22
3.2.1 Komponen Utama	22
3.2.2 Komponen Pendukung	25
3.3 PROSEDUR PENGUJIAN	26
3.4 KONDISI DALAM PENGUJIAN	29
BAB IV PENGOLAHAN DATA DAN ANALISA DATA	30
4.1 DATA	30
4.2 PENGOLAHAN DATA	31
4.2.1 Pengolahan Data untuk Pipa Bulat	32
4.2.2 Pengolahan Data untuk Pipa Kotak	34
4.3 HASIL PENGOLAHAN DATA	36
4.3 ANALIASA DATA	37
BAB V PENUTUP	42
5.1 KESIMPULAN	42
DAFTAR PUSTAKA	
I AMPIRAN	

DAFTAR GAMBAR

	Halam	ıan
Gambar 1.1	Sistem propeller grim vane wheel	2
Gambar 2.1	Perilaku viskous fluida: kurva-kurva aliran.	8
Gambar.2.2	Klasifikasi Aliran Fluida	12
Gambar 2.3	(a) Penggunaan dye untuk mengetahui jenis aliran	13
	(b) guratan zat perwarna pada aliran laminar dan turbulen	
Gambar.2.4	Diagram moody	14
Gambar.2.5	Distribusi kecepatan aliran laminar	16
Gambar.2.6	Gerakan yang dialami oleh bidang sisi sebuah kubus elemen	
	dengan rusuk δx, δy, dan δz dalam bidang x-y dalam waktu dt	
	(a) translasi. (b)deformasi linier (c)deformasi sudut.(d) rotasi.	19
Gambar 3.1	Setup alat penelitian	22
Gambar 3.2	Tanki penampungan fluida	22
Gambar 3.3	Pipa masuk dan keluar dengan penampang bulat dan kotak	23
Gambar 3.4	Pompa sentrifugal	23
Gambar 3.5	Voltage regulator	24
Gambar 3.6	Troboscope	24
Gambar 3.7	Rpm meter	25
Gambar 3.7	Tachometer	25
Gambar 4.1	Grafik debit aliran terhadap putaran pompa	37
Gambar 4.2	Grafik kecepatan aliran rata-rata vs putaran pompa	38
Gambar 4.3	Grafik putaran propeller bebas vs putaran pompa pada pipa bulat	38
Gambar 4.4	Grafik putaran propeller bebas vs putaran pompa pada pipa kotak	39
Gambar 4.5	Grafik putaran propeller bebas vs putaran pompa pada pipa kotak	
	dan pipa bulat	40
Gambar 4.6	Grafik putaran propeller bebas vs bilangan Reynolds pada pipa	
	Kotak dan pipa bulat	41
Gambar B.1	Gambar animasi 3-D alat uji	48
Gambar R 2	Alat uii tampak samping	49

	Halam	ıan
Gambar B.3	Alat uji tampak samping	49
Gambar E.1	Grafik perbandingan koefisien gesek pipa persegi gan bulat hasil	
	Percobaan schilller	77

DAFTAR TABEL

	Н	alaman
Tabel A.1	Sifat fisika air	45
Tabel A.2	Kerapatan beberapa zat cair	46
Tabel C.1	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	1000 Rpm	51
Tabel C.2	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	1200 Rpm	52
Tabel C.3	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	1400 Rpm	53
Tabel C.4	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	1600 Rpm	54
Tabel C.5	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	1800 Rpm	55
Tabel C.6	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2000 Rpm	56
Tabel C.7	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2200 Rpm	57
Tabel C.8	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2400 Rpm	58
Tabel C.9	Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2600 Rpm	59
Tabel C.10	O Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2800 Rpm	60
Tabel C.1	1 Pengambilan data pipa bulat pada kecepatan pompa sentrifugal	
	2930 Rpm	61
Tabel C.12	2 Pengambilan data pipa kotak pada kecepatan pompa sentrifuga	1
	1000 Rpm	62

На	laman
Tabel C.13 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
1200 Rpm	63
Tabel C.14 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
1400 Rpm	64
Tabel C.15 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
1600 Rpm	65
Tabel C.16 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
1800 Rpm	66
Tabel C.17 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2000 Rpm	67
Tabel C.18 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2200 Rpm	68
Tabel C.19 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2400 Rpm	69
Tabel C.20 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2600 Rpm	70
Tabel C.21 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2800 Rpm	71
Tabel C.22 Pengambilan data pipa kotak pada kecepatan pompa sentrifugal	
2930 Rpm	72
Tabel D.1 Tabel Pengolahan Data pipa Bulat	74
Tabel D.2 Tabel Pengolahan Data pipa Kotak	75