

Studi pengaruh elektrolit H₂SO₄, NaOH, H₃PO₄ dan H₂C₂O₄ terhadap nilai kekerasan dan ketebalan lapisan oksida aluminium hasil anodizing untuk aplikasi piston = Study influence of electrolyte H₂SO₄, NaOH, H₃PO₄ and H₂C₂O₄ compare with hardness value and alumunium oxide layer thickness result of anodizing for piston application

Deskripsi Dokumen: <http://lib.ui.ac.id/bo/uibo/detail.jsp?id=20245595&lokasi=lokal>

Abstrak

One of important element from automotive component is head of piston that made from alumunium. Head of piston in application experience dinamics friction show that needs high abrasive and corrosion resistance. The properties of abrasive resistance and corrosion resistance from head of piston will influence for it life time. One of final treatment methode that can used for getting good abrasive and corrosive resistance is anodizing. In this anodizing process, the alumunium surface will be changed in to alumunium oxide (Al₂O₃) that very hard and good corrosion resistance. One of the most important factor to determine the result of surface characteristic in anodizing are electrolyte types. This research was then conduct to understand influence from difference electrolyte that used in this process to hardness and thickness from oxide layer that resulted in the surface of alluminium silicon alloy. The variabel that used in this research from the variation of kinds electrolyte which is H₂SO₄, NaOH, H₂C₂O₄ dan H₃PO₄. The result shows that are difference hardness and thickness from the oxide layer in this anodizing methode in H₂SO₄, NaOH, H₂C₂O₄ and H₃PO₄ electrolyte, were caused by the diffrence of dissociation degree and ion conductivity from each solution. The hardness value from this oxide layer, based on microhardness testing, the result are 401 _HV in H₂SO₄, 125 _HV in NaOH electrolyte, 151 _HV in H₂C₂O₄ electrolyte, and 1288 _HV in H₃PO₄ electrolyte. And then the thickness value from oxide layer based on microhardness testing, the result are 17 _m in H₂SO₄ electrolyte , 3 _m in NaOH electrolyte, 4 _m in H₂C₂O₄ electrolyte , and 7 _m in H₃PO₄ electrolyte.