Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 126 dokumen yang sesuai dengan query
cover
Borra, Surekha
"Thanks to recent advances in sensors, communication and satellite technology, data storage, processing and networking capabilities, satellite image acquisition and mining are now on the rise. In turn, satellite images play a vital role in providing essential geographical information. Highly accurate automatic classification and decision support systems can facilitate the efforts of data analysts, reduce human error, and allow the rapid and rigorous analysis of land use and land cover information. Integrating Machine Learning (ML) technology with the human visual psychometric can help meet geologists demands for more efficient and higher-quality classification in real time. "
Singapore: Springer Nature, 2019
eBooks  Universitas Indonesia Library
cover
Ronald Grant
"Dengan memperhatikan serta menyusun pola makan, kesehatan tubuh dapat meningkat dikarenakan nutrisi yang didapatkan oleh tubuh. Pemanfaatan machine learning, melalui model deteksi multiobjek, dapat membantu pendeteksian berbagai jenis makanan hanya dengan input sebuah gambar. Dengan terdeteksinya jenis makanan digabungkan dengan output berupa nutrisi yang terkandung dalam makanan dapat membantu dalam mengatur pola makan. Pengaturan pola makan dengan memanfaatkan deteksi objek dapat dilakukan dengan pelatihan sebuah dataset dengan menggunakan algoritma YOLO. Pendeteksian makanan yang dilakukan dengan menggunakan algoritma YOLO memerlukan acuan evaluasi dengan tujuan meningkatkan akurasi dari deteksi yang dilakukan, yang mana merupakan alasan dari pengukuran mAP. Penggunaan arsitektur YOLOv7 terlihat dapat menghasilkan model yang lebih baik dibandingkan YOLOv5 dengan mAP 0,947. Penggabungan YOLOv7 dengan dataset yang berisikan multiclass single image juga berhasil dalam melakukan deteksi multi-object makanan sesuai dengan kategori yang telah ditentukan. Dengan tujuan penggunaan model oleh masyarakat luas, model deteksi jenis makanan diimplementasikan dalam bentuk aplikasi mobile dengan basis Java. Implementasi dalam bentuk aplikasi membuat masyarakat luas dapat memanfaatkan model deteksi objek sebagai salah satu acuan pemilihan pola makan yang lebih sehat.

By paying attention to and compiling a diet, body health can improve due to the nutrients the body gets. Utilization of machine learning, through a multi-object detection model, can help detect various types of food only by inputting an image. Diet adjustment using object detection can be done by training a dataset using the YOLO algorithm. Food detection carried out using the YOLO algorithm requires an evaluation reference with the aim of increasing the accuracy of the detection carried out, which is the reason for using mAP.. The use of the YOLOv7 architecture seems to produce a better model than YOLOv5 with a mAP of 0.947. Merging YOLOv7 with a dataset containing multiclass single images was also successful in detecting multi-object food according to predetermined categories. With the aim of using the model by the wider community, a food type detection model is implemented in the form of a mobile application based on Java. Implementation in the form of an application allows the general public to utilize the object detection model as a reference for choosing a healthier diet."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reva Maya Tika
"Pendahuluan: Pandemi Covid-19 menjadi risiko peningkatan kejadian Computer Vision Syndrome karena terjadinya perubahan lingkungan untuk bekerja maupun belajar. Hal ini terutama terjadi pada mahasiswa dengan latar belakang bukan dengan jurusan komputer. Tujuan: Penelitian ini bertujuan untuk mengetahui faktor risiko yang berhubungan dengan kejadian CVS pada mahasiswa tahun 2021. Metode: Penelitian ini menggunakan studi potong lintang (cross-sectional) dengan populasi mahasiswa S1 Reguler FKM UI angkatan 2018, 2019, dan 2020 dengan jumlah sampel 124 mahasiswa. Data dikumpulkan melalui kuesioner online dengan media gform yang disebarkan pada bulan November 2021. Analisis univariat dilakukan untuk melihat frekuensi distribusi dari masing-masing variabel dan analisis bivariat dilakukan dengan menggunakan uji chi-square untuk melihat hubungan secara statistik. Kemudian juga dimunculkan nilai odd ratio untuk melihat nilai kelompok yang memiliki risiko. Hasil: Kejadian CVS pada mahasiswa S1 Reguler FKM UI angkatan 2018, 2019, dan 2020 sebesar 87,1%. Dari hasil analisis hanya ditemukan satu variabel yang memiliki hubungan signifikan dengan kejadian CVS pada mahasiswa yaitu kelelahan emosional (p=0,004). Namun terdapat dua variabel yang menjadi faktor risiko terjadinya CVS yaitu kelelahan emosional (OR=5,465), durasi penggunaan komputer (OR=4,754). Kesimpulan: Pada penelitian ini terdapat satu variabel yang memiliki hubungan yang signifikan dengan kejadian CVS pada mahasiswa dan terdapat dua variabel yang menjadi faktor risiko terjadinya CVS pada mahasiswa. Saran: Pihak kampus hendaknya memberikan informasi dengan melakukan promosi serta sosialisasi terkait kejadian CVS kepada seluruh civitas kampus terutama mahasiswa.

Introduction: The changes of learning process from conventional method to online system during the Covid-19 pandemic has increased the occurance rate of Computer Vision Syndrome especially for non-computer majors students. Objectives: This study aims to determine the risk factors associated with CVS among university students in 2021. Methods: This research uses a cross-sectional study with the population of 124 students from Public Health Faculty regular program of Universitas Indonesia who are currently on their second to fourth year term. The data was collected through an online questionnaire using google form which was distributed on November 2021. Univariate analysis was carried out to see the frequency distribution of each variable and bivariate analysis was carried out using the chi-square test to see statistical relationships. In addition, the odd ratio value is used to measure the associate risk between independent and dependent variables. Results: The prevalance of CVS among the students was 87.1%. From the statistical analysis, there is only one variable that has significant relationship with CVS incident, which is burnout (p = 0.004). However, there are two variables that are found as risk factors for CVS, namely: 1) burnout (OR = 5,465); 2) computer duration use (OR = 4,754).Conclusion: There is one variable that has significant relationship with the incidence of CVS among students while there are two variables that are risk factors for CVS in students. Suggestion: The campus should provide more information related to CVS by conducting promotion and socialization for the entire campus community, especially towards students."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Snyder, Wesley E
"Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications."
United Kingdom: Cambridge University Press, 2017
e20529227
eBooks  Universitas Indonesia Library
cover
Zafira Binta Feliandra
"Penyakit stroke adalah penyebab kematian terbesar kedua di dunia. Pasien stroke harus menjalani perawatan berupa latihan rehabilitasi secara rutin untuk memulihkan fungsi motorik mereka. Sering kali pasien stroke kesulitan mendapatkan perawatan karena keterbatasan ekonomi dan mobilisasi. Selain itu, kondisi pandemi COVID-19 sekarang ini membuat pasien takut untuk pergi ke rumah sakit. Telehealth sebagai pelayanan kesehatan jarak jauh merupakan salah satu solusi untuk kondisi tersebut. Aplikasi telehealth untuk rehabilitasi stroke dapat dikembangkan dikombinasikan dengan teknologi human motion detection. Penelitian ini bertujuan untuk mengetahui model human motion detection yang dapat mendeteksi gerakan secara stabil serta untuk mengetahui model klasifikasi yang dapat mengklasifikasi gerakan stroke dan non stroke secara akurat. Penelitian dilakukan menggunakan data video gerakan pasien stroke dan orang sehat sebagai input model human motion detection. Keypoints hasil ekstraksi dari model human motion detection kemudian ditransformasi menjadi gambar RGB dan digunakan sebagai input model klasifikasi. Penelitian ini membandingkan tiga model human motion detection, yaitu PoseNet, BlazePose, dan MoveNet, serta dua model klasifikasi gambar, yaitu AlexNet dan SqueezeNet.
Beberapa eksperimen dilakukan untuk mengklasifikasi gerakan stroke dan non stroke. Terdapat eksperimen dengan pembagian data tanpa 3-Fold Cross Validation, eksperimen dengan pembagian data 3-Fold Cross Validation, eksperimen menggunakan semua keypoints hasil ekstraksi model human motion detection, dan eksperimen menggunakan beberapa keypoints yang relevan. Model human motion detection dan model klasifikasi terbaik dari hasil penelitian ini diharapkan dapat berkontribusi kepada para pihak yang ingin mengembangkan aplikasi telehealth sebagai sarana rehabilitasi stroke. Berdasarkan hasil penelitian ini, didapatkan bahwa MoveNet adalah model human motion detection yang paling stabil dalam memantau pergerakan pasien dan AlexNet adalah model klasifikasi terbaik untuk mengklasifikasikan pasien stroke dan non stroke berdasarkan gerakan upper body dan gerakan lower body.

Stroke is the second biggest cause of death in the world. Stroke patients must undergo rehabilitation on regular basis to exercise and restore their motor functions. Oftentimes, stroke patients find it difficult to get their treatment because of economic and mobility limitations. In addition, the current state of the COVID-19 pandemic makes patients afraid to go to the hospital. Telehealth as a long-distance health service is one of the solution for this condition. Telehealth applications for stroke rehabilitation can be developed in combination with human motion detection technology. This study aims to determine the human motion detection model that can detect movement steadily and determine the classification model that can classify stroke and non-stroke motions accurately. The study was conducted using video data of stroke patients and healthy people as input for the human motion detection model. Keypoints extracted from the human motion detection model are then transformed into RGB images and used as input for the classification model. This study compares three models of human motion detection, namely PoseNet, BlazePose, and MoveNet and two image classification models, namely AlexNet and SqueezeNet.
Several experiments were conducted to classify stroke and non-stroke motions. There are experiments without data splitting 3-Fold Cross Validation, experiments with data splitting 3-Fold Cross Validation, experiments using all keypoints extracted from the human motion detection model, and experiments using several relevant keypoints. The most steady human motion detection model and the best classification model from the results of this study are expected to contribute to those who want to develop telehealth applications as a means of stroke rehabilitation. Based on the results of this study, it was found that MoveNet is the most steady human motion detection model for monitoring the patients motions and AlexNet is the best classification model for classifying stroke and non stroke patients based on upper body and lower body movements.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mohammad Rizky Chairul Azizi
"Di era perkembangan teknologi ini, sains data menjadi kebutuhan dalam pekerjaan manusia, sehingga peneliti mengembangkan Lumba.ai untuk memudahkan masyarakat umum mengakses teknologi data science dan computer vision, khususnya fitur semantic object segmentation, tanpa memerlukan pemahaman mendalam tentang IT. Penelitian ini berfokus pada pengembangan fitur semantic object segmentation pada Lumba.ai dengan memanfaatkan model Convolutional Neural Network seperti Fully Convolutional Networks (FCN) dan DeepLabv3. Proses implementasinya meliputi pemrosesan data, pemodelan, dan evaluasi model menggunakan metrik, serta komparasi model dengan menggunakan weighted binary cross entropy. Hasil menunjukkan komparasi metrik pada model-model machine learning yang diuji menunjukkan FCN dan DeepLabv3 merupakan dua model dengan performa terbaik dengan mendapatkan skor IoU dan Recall tertinggi yang didukung ResNet101 sebagai backbone serta diterapkan W-BCE. Dalam pengembangannya, penulis mengimplementasi task queueing dan monitoring GPU guna memproses request pengguna dengan optimal saat melakukan training. Dari penelitian ini, didapat hasil yang cukup baik dengan melakukan konfigurasi satu celery worker dan jumlah concurrency yang dinamis bergantung kepada jumlah GPU yang available dari proses monitoring GPU.

In this era of technological development, data science has become essential in human work, prompting researchers to develop Lumba.ai to facilitate public access to data science and computer vision technology, particularly the feature of semantic object segmentation, without requiring deep IT knowledge. This research focuses on developing the semantic object segmentation feature on Lumba.ai by utilizing Convolutional Neural Network models such as Fully Convolutional Networks (FCN) and DeepLabv3. The implementation process includes data processing, modeling, and model evaluation using metrics, as well as model comparison using weighted binary cross entropy. The results show that the comparison of metrics on the tested machine learning models indicates that FCN and DeepLabv3 are the two best-performing models, achieving the highest IoU and Recall scores, supported by ResNet101 as the backbone and applying W-BCE. During development, the author implemented task queuing and GPU monitoring to optimally process user requests during training. The research produced satisfactory results by configuring a single celery worker and dynamic concurrency depending on the number of GPUs available from the GPU monitoring process."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anindya Sasriya Ibrahim
"Di era perkembangan teknologi ini, sains data menjadi kebutuhan dalam pekerjaan manusia, sehingga peneliti mengembangkan Lumba.ai untuk memudahkan masyarakat umum mengakses teknologi data science dan computer vision, khususnya fitur semantic object segmentation, tanpa memerlukan pemahaman mendalam tentang IT. Penelitian ini berfokus pada pengembangan fitur semantic object segmentation pada Lumba.ai dengan memanfaatkan model Convolutional Neural Network seperti Fully Convolutional Networks (FCN) dan DeepLabv3. Proses implementasinya meliputi pemrosesan data, pemodelan, dan evaluasi model menggunakan metrik, serta komparasi model dengan menggunakan weighted binary cross entropy. Hasil menunjukkan komparasi metrik pada model-model machine learning yang diuji menunjukkan FCN dan DeepLabv3 merupakan dua model dengan performa terbaik dengan mendapatkan skor IoU dan Recall tertinggi yang didukung ResNet101 sebagai backbone serta diterapkan W-BCE. Dalam pengembangannya, penulis mengimplementasi task queueing dan monitoring GPU guna memproses request pengguna dengan optimal saat melakukan training. Dari penelitian ini, didapat hasil yang cukup baik dengan melakukan konfigurasi satu celery worker dan jumlah concurrency yang dinamis bergantung kepada jumlah GPU yang available dari proses monitoring GPU.

In this era of technological development, data science has become essential in human work, prompting researchers to develop Lumba.ai to facilitate public access to data science and computer vision technology, particularly the feature of semantic object segmentation, without requiring deep IT knowledge. This research focuses on developing the semantic object segmentation feature on Lumba.ai by utilizing Convolutional Neural Network models such as Fully Convolutional Networks (FCN) and DeepLabv3. The implementation process includes data processing, modeling, and model evaluation using metrics, as well as model comparison using weighted binary cross entropy. The results show that the comparison of metrics on the tested machine learning models indicates that FCN and DeepLabv3 are the two best-performing models, achieving the highest IoU and Recall scores, supported by ResNet101 as the backbone and applying W-BCE. During development, the author implemented task queuing and GPU monitoring to optimally process user requests during training. The research produced satisfactory results by configuring a single celery worker and dynamic concurrency depending on the number of GPUs available from the GPU monitoring process."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutabarat, Bintang Gabriel
"Di era perkembangan teknologi ini, sains data menjadi kebutuhan dalam pekerjaan manusia, sehingga peneliti mengembangkan Lumba.ai untuk memudahkan masyarakat umum mengakses teknologi data science dan computer vision, khususnya fitur semantic object segmentation, tanpa memerlukan pemahaman mendalam tentang IT. Penelitian ini berfokus pada pengembangan fitur semantic object segmentation pada Lumba.ai dengan memanfaatkan model Convolutional Neural Network seperti Fully Convolutional Networks (FCN) dan DeepLabv3. Proses implementasinya meliputi pemrosesan data, pemodelan, dan evaluasi model menggunakan metrik, serta komparasi model dengan menggunakan weighted binary cross entropy. Hasil menunjukkan komparasi metrik pada model-model machine learning yang diuji menunjukkan FCN dan DeepLabv3 merupakan dua model dengan performa terbaik dengan mendapatkan skor IoU dan Recall tertinggi yang didukung ResNet101 sebagai backbone serta diterapkan W-BCE. Dalam pengembangannya, penulis mengimplementasi task queueing dan monitoring GPU guna memproses request pengguna dengan optimal saat melakukan training. Dari penelitian ini, didapat hasil yang cukup baik dengan melakukan konfigurasi satu celery worker dan jumlah concurrency yang dinamis bergantung kepada jumlah GPU yang available dari proses monitoring GPU.

In this era of technological development, data science has become essential in human work, prompting researchers to develop Lumba.ai to facilitate public access to data science and computer vision technology, particularly the feature of semantic object segmentation, without requiring deep IT knowledge. This research focuses on developing the semantic object segmentation feature on Lumba.ai by utilizing Convolutional Neural Network models such as Fully Convolutional Networks (FCN) and DeepLabv3. The implementation process includes data processing, modeling, and model evaluation using metrics, as well as model comparison using weighted binary cross entropy. The results show that the comparison of metrics on the tested machine learning models indicates that FCN and DeepLabv3 are the two best-performing models, achieving the highest IoU and Recall scores, supported by ResNet101 as the backbone and applying W-BCE. During development, the author implemented task queuing and GPU monitoring to optimally process user requests during training. The research produced satisfactory results by configuring a single celery worker and dynamic concurrency depending on the number of GPUs available from the GPU monitoring process."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Choudhary, Alok Nidhi, 1961
[Place of publication not identified]: Kluwer, 1990
006.3 CHO p
Buku Teks SO  Universitas Indonesia Library
cover
Cambridge, UK: MIT Press, 1987
612.84 VIS
Buku Teks SO  Universitas Indonesia Library
<<   3 4 5 6 7 8 9 10 11 12   >>