Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7121 dokumen yang sesuai dengan query
cover
Grant, Malcolm A.
"Buku yang berjudul "Geothermal reservoir engineering" ini ditulis oleh Malcolm A. Grant, Ian G. Donaldson, dan Paul F. Bixley. Buku ini membahas tentang geothermal, sistem, konsep dari geothermal tersebut."
New York: Academic Press, Inc., 1982
R 621.44 GRA g
Buku Referensi  Universitas Indonesia Library
cover
Teguh Perdana Putra
"Potensi energi geotermal Indonesia merupakan yang terbesar di dunia, namun kini baru diutilisasi sekitar 4% dari potensi tersebut. Penelitian ini bertujuan mengoptimalkan penempatan sumur produksi geotermal di lapangan X agar risiko aktivitas pengembangan skema produksi dapat diminimalisasi. Pada penelitian ini dilakukan pemodelan dan simulasi reservoir dengan menggunakan data 3G (Geologi, Geofisika dan Geokimia) dari lapangan X dan data dari sumur yang telah ada. Dengan menggunakan TOUGH2, PETRASIM dan GeoSlicer-X, pemodelan forward yang mencakup adjustment dari litologi dan posisi sources dilakukan hingga model reservoir mencapai kondisi natural state.
Data hasil simulasi reservoir kemudian diregresi menggunakan MATLAB serta dilakukan optimasi numerik guna mendapatkan titik-titik penempatan sumur produksi yang diajukan untuk penambahan kapasitas terpasang di lapangan X. Didapatkan hasil penelitian titik optimum penempatan sumur produksi pada koordinat x 3276 m dan y 4262 m dengan nilai entalpi spesifik maksimum 1529,9 kJ/kg; serta 6 titik penempatan sumur produksi dengan nilai entalpi spesifik 1500, 1450 dan 1400 kJ/kg. Dengan demikian, penambahan kapasitas terpasang dari skema produksi tambahan ini diestimasi dapat mencapai 43,5 MWe.

Indonesia has the biggest estimated geothermal energy reserve in the world, but only 4% of that reserve currently utilized to generate electricity. The purpose of this research is to optimize the production well placements at X field to minimize the failure risk of production scheme development. In the research, reservoir modelling and simulation is conducted based on 3G (Geological, Geophysical and Geochemical) data and existing wells data. Forward modelling process, which covers the lithology and sources position adjustment, is executed with TOUGH2, PETRASIM and GeoSlicer-X to validate the reservoir model towards natural state condition.
Using MATLAB, the resulting data is regressed and used to numerically optimize the production well placement decision based on the fluid specific enthalpy. The new production scheme is proposed to further increase the installed capacity in X field. The final result is the optimal point of well placement; which is 3276 m in x coordinate and 4262 m in y coordinate with the maximum specific enthalpy value of 1529,9 kJ/kg and 6 (six) other points with specific enthalpy of 1500, 1450 or 1400 kJ/kg. Thus, the improvement of the installed capacity with the proposed production scheme is estimated to reach 43,5 MWe.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54875
UI - Skripsi Membership  Universitas Indonesia Library
cover
London: Earthscan, 2003
621.44 GEO
Buku Teks  Universitas Indonesia Library
cover
Chandrasekharam, D.
Boca Raton: CRC Press, Taylor & Francis Group, 2008
621.44 CHA l
Buku Teks  Universitas Indonesia Library
cover
Armstead, H. Christopher H.
London ; New York: E&FN Spon, 1983
621.44 ARM g
Buku Teks  Universitas Indonesia Library
cover
Armstead, H. Christopher H.
London: E&FN Spon, 1978
333.792 ARM g
Buku Teks SO  Universitas Indonesia Library
cover
Arsallah Putra
"Penurunan produksi minyak, mendorong dikembangkan sumber energi terbarukan yaitu geotermal. Walaupun dengan besar cadangan geotermal terbesar di dunia (29 GW), hanya 4% dari potensi tersebut yang sudah dikembangkan oleh Indonesia. Besarnya resiko dalam pengembangan suatu lapangan geotermal merupakan alasan lambatnya pengembangan. Salah satu upaya untuk mengurangi resiko pada tahap pengembangan adalah dengan melakukan pemodelan reservoir dan analisis sensitivitas parameter terkait. Pada penelitian ini dilakukan pemodelan dan simulasi reservoir pada lapangan X dengan mengkaji terlebih dahulu data 3G (Geologi, Geofisika, dan Geokimia) dan data sumur. Data tersebut akan diproses ke dalam piranti lunak TOUGH2, Petrasim untuk mengetahui model sistem geotermal lapngan X pada natural state. Piranti lunak GeoSlicerX juga digunakan untuk memudahkan visualisasi dari model. Selain itu, Microsoft Excel juga digunakan untuk mengetahui pengaruh besar tiap parameter terhadap kandungan panas. Dengan adanya penelitian ini diharapkan dapat meminimalisir resiko yang ada dalam pengembangan energi geotermal di Indonesia.

The decline in oil production, encourage the development of renewable energy sources one of which is geothermal. Although the Indonesian has been awarded as the largest global reserves (29 GW), only 4% of this potential is already developed. The magnitude of risk in the development of a geothermal field is one the reason for the slow development. One effort to minimize the risk at this stage of development is the reservoir modeling and sensitivity analysis of relevant parameters. In this research, modeling and reservoir simulation in the field of X by reviewing the data 3G (Geology, Geophysics and Geochemistry) and well data. The relevant data will be processed in software TOUGH2,Petrasim to build the geothermal system of ‘X’ Field. Visualization is conducted in GeoslicerX. The data result from the model will be extracted to determine the heat stored and sensitivity analysis in Microsoft Excel. Result of the research is expected to minimize the risks inherent in the development of geothermal energy in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54877
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nikita Christina
"Lapangan geotermal Wayang Windu terletak di Jawa Barat telah beroperasi sejak tahun 2000 dengan total kapasitas produksi sebesar 227 MW dan memiliki 28 sumur produksi dan 5 sumur injeksi. Telah dilakukan pengukuran berulang gravitasi dengan 51 benchmarks pada tahun 2014 dan 2017. Dari hasil pengukuran tersebut terlihat perbedaan anomali gravitasi mikro yang berasosiasi dengan perubahan massa di bawah permukaan. Dari 51 stasiun amat, terjadi perbedaan antara pengukuran pada tahun 2014 dengan tahun 2017 mulai dari -263.1 µGal hingga +47.6 µGal. Di daerah selatan lapangan, terjadi nilai perubahan yang positif dengan indikasi adanya penambahan massa sedangkan pada bagian utara, yang merupakan daerah produksi utama, terjadi nilai perubahan yang negatif dengan indikasi terjadinya mass deficit akibat proses produksi.  Dari nilai anomali gravitasi tersebut, dengan metode gridding menggunakan teorema flux Gauss, ditemukan perubahan massa di reservoir sebesar -32.8 juta ton dengan keterangan pertambahan massa di sebelah selatan sebesar 8.1 juta ton, dan pengurangan massa di sebelah utara sebesar 40.9 juta ton untuk tahun 2014-2017. Dari analisis anomali gravitasi mikro tersebut, dapat diamati juga pola aliran fluida sehingga dapat diketahui ketepatan fungsi sumur injeksi. Dengan bantuan data gempa mikro, dapat terlihat, pola aliran fluida yang mengalir dari sebelah selatan lapangan menuju tengah hingga bagian utara lapangan, serta bagian barat laut menuju timur-tenggara, ke arah zona produksi utama. Hasil yang didapat dari penelitian ini dapat digunakan untuk manajemen reservoir geotermal untuk menciptakan sistem dan produksi uap yang berkelanjutan.

Wayang Windu geothermal field is located in West Java and has been operating since 2000. The field has total production capacity of 227 MW, with the 28 production wells and five reinjection wells. Repeated gravity measurements have been done with 51 benchmarks around the reservoir boundary in 2014 and 2017. There are differences in the gravity value associated with the change of mass in the reservoir. The southern area of the field has positive value of gravity changes (up to +47.6 µgal) which indicates the increased mass due to injection process. The northern area which has vapor dominated system and as the location for most of the production wells, has a negative value of gravity changes (up to -263.1 µgal) with the indication of mass deficit due to the production activity. Using the microgravity anomaly and gridding method of Gaussian flux theorem, the change of mass in the reservoir can be found. There is -32.8 Mt of mass changes in the reservoir with 8.1 Mt mass added at the south of the field and 40.9 Mt of mass loss at the north of the field in 2014 until 2017. According to the analysis of changes in microgravity value, fluid flow patterns can also be observed to find the accuracy of reinjection well function. Using micorearthquake data as the secondary data, found that the fluid flow pattern of the field is from the south of the field to the center and the north of the field, and from NW to East-Southeast. The result of this study can be used for geothermal reservoir management to create a sustainable and renewable geothermal system."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
cover
Donny Isa Marianto Suryo Putro
"Daerah “D” merupakan salah satu daerah prospek panasbumi di Indonesia. Daerah ini di dominasi oleh batuan produk vulkanik yang terdiri dari aliran lava dan kubah-kubah vulkanik. Manifestasi di daerah ini terdiri dari kelompok mata air panas D dengan temperatur sebesar 95 – 97oC dan kelompok mata air panas M dengan temperatur sebesar 60,9 – 84,0oC. Kedua kelompok mata air panas tersebut memiliki tipe klorida. Selain itu, terdapat batuan ubahan di sekitar manifestasi yang mengandung mineral ubahan yang di dominasi oleh mineral silika. Untuk mendelineasi sistem panasbumi tersebut, maka dilakukan inversi 3-D data magnetotellurik, baik dengan full impedance tensor maupun dengan off-diagonal element dengan menggunakan software MT3Dinv-X. Hasil dari inversi 3-D dengan full impedance tensor menggambarkan kondisi bawah permukaan lebih baik dibandingkan dengan off diagonal element. Lapisan konduktif (<15 ohm-m) dengan ketebalan 200 m – 1 km diindikasikan sebagai caprock. Lapisan dibawah caprock (15 – 158 ohm-m) diindikasikan sebagai reservoar. Sedangkan body dengan resistivitas >1.000 ohm-m diindikasikan sebagai heat source yang merupakan intrusi dari batuan beku muda. Selanjutnya, hasil inversi 3-D tersebut diintegrasikan dengan data gravitasi untuk membuat model konseptual dari sistem panasbumi “D”. Dimana sistem panasbumi “D” merupakan jenis sistem panasbumi intermediate temperature dengan temperatur reservoar sebesar 190oC berdasarkan geotermometer Na/K."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54869
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>