Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 51007 dokumen yang sesuai dengan query
cover
Stevenson, William D.
Jakarta: Erlangga, 1996
621.3 STE a
Buku Teks  Universitas Indonesia Library
cover
Stevenson, William D.
Jakarta: Erlangga, 1984
621.319 STE a
Buku Teks  Universitas Indonesia Library
cover
Yon Rijono
Yogyakarta: Andi, 2002
621.31 YON d
Buku Teks  Universitas Indonesia Library
cover
Yon Rijono
Yogyakarta: Andi, 1997
621.31 YON d
Buku Teks  Universitas Indonesia Library
cover
Jonathan Budi
"Mempertahankan keseimbangan dalam demand-supply dan meregulasi frekuensi merupakan sebuah tantangan dalam distribusi tenaga lisrik. Ketidakseimbangan antara generasi dan beban dalam distribusi tenaga listrik harus dikoreksi dalam waktu sesingkat mungkin, deviasi pada frekuensi dapat mengancam kestabilan dan keamanan dari sebuah sistem distribusi listrik, bahkan dapat memberikan kerusakan permanen pada fasilitas distribusi tenaga listrik. Penelitian kepada kedua sisi dari distribusi tenaga listrik telah dicoba dan diterapkan, pengaturan pada sisi generasi untuk memenuhi permintaan beban listrik telah dibuktikan tidak efisien dan tidak efektif karena hilangnya tenaga listrik secara tiba-tiba dan perubahan frekuensi pada beban sering terjadi. Simulasi menggunakan program MATLAB akan digunakan untuk memodelkan beban motor induksi dan beban konstan yang menggunakan parameter asli. Tujuan utama dari tesis ini adalah membuat sebuah model beban komposit yang terdiri dari beban motor induksi dan beban konstan. Dengan menganalisa kondisi transien dari beban motor induksi, Analisa terhadap perubahan frekuensi dan tegangan yang mengakibatkan perubahan frekuensi pada sistem distribusi listrik.

Maintaining a demand supply balance and regulating frequency are always a main issue in power system distribution. An imbalance between generation and load in power system need to be corrected within a short period, otherwise a large frequency deviation may threaten the stability and security of a power system or even worse, it can cause a permanent damage to the power system facilities itself. An approach on both sides of the power system network have been tried and applied, as the approach on adjusting the generation side to satisfy the load demand are proven to be inefficient and ineffective due to the sudden power loss in the generation and change in the load are frequently occurred. An extensive simulation using the MATLAB program will be used throughout the research to accurately model the induction motor load and constant load in the real world situation. The main objective of the project is to model a Composite load Induction Motor load and Constant load . By observing the transient state of the induction motor load, we can observe the frequency and voltage behaviour that occur and affect the overall frequency of the power system network.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stevenson, William D.
Malang: Universitas Brawidjaya, 1981
621.319 STE a
Buku Teks  Universitas Indonesia Library
cover
Fajar Ari Kristianto
"Sistem Jawa Bali yang merupakan sistem interkoneksi tenaga listrik terbesar di negara Indonesia utiliti PLN yang memiliki salah satu permasalahan keandalan yaitu ketidakstabilan. Pengoperasian Sistem Interkoneksi Tenaga Listrik Jawa Bali juga saat ini masih mengoptimalkan keekonomian dengan transfer timur ke barat yang tinggi dikarenakan beban tertinggi berada di Jakarta dan Banten. Akan tetapi 40% dari total kapasitas pembangkit di Barat merupakan PLTG/GU berbahan bakar gas yang mahal. Beberapa tahun kedepan juga diperkirakan akan tetap mengandalkan transfer timur ke barat untuk keekonomian, dikarenakan perlu mengoptimalkan evakuasi PLTU batubara USC baru kelas 1000 MW yang murah yang banyak di bangun di wilayah tengah. Permasalahan ketidakstabilan tersebut terjadi ketika kontingensi N-2 yang saat ini sudah menjadi kredibel 2 tahun belakang dengan adanya beberapa kejadian gangguan meluas yang terjadi seperti 5 September 2018 (SUTET Paiton-Grati) dan 4 Agustus 2019 (SUTET Ungaran-Batang). Gangguan N-2 tersebut dapat menyebabkan ketidakstabilan atau ketidakserempakan osilasi sudut rotor di beberapa pembangkit sehingga dapat mengaktifkan relay power swing di ruas transmisi lain yang selanjutnya dapat mentripkan transmisi tersebut sehingga sistem interkoneksi barat dan timur akan menjadi terpisah. Ketidakseimbangan komposisi beban yang lebih besar daripada pembangkit di barat selanjutnya akan menyebabkan relai frekuensi rendah bekerja. Peralatan proteksi saat ini atau defence scheme dengan skema UFR dan OLS tahapan pelepasan beban statis tidak dapat mengatasi permasalahan tersebut. Adaptive Defence Scheme merupakan aksi korektif yang ditempuh dengan jalan melepas pembangkitan dan beban secara dinamis adaptif dengan menyesuaikan data beban secara realtime sehingga terjadi keseimbangan dan mencegah terjadinya ketidakstabilan sistem jika terjadi gangguan kredibel. Ketika transfer ditingkatkan, maka selisih transfer saat itu dengan batasan transfer akan menjadi kuota target yang disimpan untuk mentripkan beberapa pembangkit dan beban jika terjadi kontingensi s.d. N-2 atau kondisi arming aktif. Dengan transfer dapat ditingkatkan dan telah terpasang ADS, maka untuk analisis keekonomian, skenario batasan stabilitas transfer, gas pipa konstrain, LNG lepas, dengan ADS lebih menguntungkan opportunity cost komponen C bahan bakar dibanding skenario tanpa ADS (tahun 2021 selisih Rp 3.5 T atau 16.42 Rp/kWh, tahun 2022 selisih Rp 1.1 T atau 5.21 Rp/kWh , tahun 2023 selisih Rp 9,2 M atau 0.04 Rp/kWh, dan tahun 2024 selisih Rp 18.6 M atau 0.07 Rp/kWh). Sedangkan untuk analisis keandalan, dengan meningkatkan transfer telah terpasang ADS, jika terdapat kontingensi N-2, sistem aman menuju titik kestabilan yang teredam jika dibandingkan dengan tidak terpasang ADS, dan cadangan putar fast frequency response terpenuhi untuk kriteria 1000 MW dalam 10 menit.

Java Bali Power System Operation is the biggest interconnection power system in PLN Indonesia which is have a reliability problem like instability. Nowadays, Java Bali Interconnection power system operation still optimize the economically aspect by energy transferring from east to west due to the highest loads in Jakarta as the capital and business central city and Banten, Karawang, Cikarang, as the industrial cities. However, 40% from the generation capacity in the west are the expensive gas turbine power plant. In the few years later, PLN predict that is still using energy transferring from east to west for the economical consideration and to optimizing the new ultra super critical 1000 MW class coal fired power plant evacuation which most of them still on going constructed in the central side.
That instability problems are happen when there is N-2 contingency that nowadays become credible contingency since 2 years ago with any blackout in September 5'th 2018 (Paiton-Grati 500 kV T/L) and August 4'th 2019 (Ungaran-Batang 500 kV T/L). That N-2 contingency caused the rotor angle instability or oscilation in the few power plant that caused the power swing relay in the other T/L circuit was actived and then can tripped other T/L so that can caused the west and east interconnection was separated. The imbalance composition of more loads than generations in the west, then caused the Under Frequency Relay is working. The defence scheme with the static load shedding allocation couldn't overcome that problems.
Adaptive Defence Scheme is the system protection action which is tripping the generator and load as adaptively by adjust from realtime data to get a balance and avoiding the instability due to credible contingensy. When the transfer is increased, that different with threshold will be the shedding allocation that was saved to tripping generation and or load if N-2 contingency happen or the arming was actived. By increasing the transfer and implementing the ADS, so in economical analysis, the scenario using transfer stability threshold, constraintly pipe gas, free LNG, with ADS more profitable in opportunity fuel cost or C component comparing to without ADS scenario (in 2021 the difference is Rp 3.5 Trillion or 16.42 Rp/kWh, in 2022 the difference is Rp 1.1 Trillion or 5.21 Rp/kWh, in 2023 the difference is Rp 9,2 Billion or 0.04 Rp/kWh, in 2024 the difference is Rp 18.6 Billion or 0.07 Rp/kWh). Moreever, in the reliability analysis, by increasing the transfer and implementing the ADS, if there are N-2 contingency, system still become stable comparing to without ADS, and fast frequency response reserve margins are fullfilled for 1000 MW during 10 minutes reliability criteria.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Irana Krisiana
"Kebutuhan energi listrik untuk kehidupan sehari-hari akan terus meningkat seiring dengan pertumbuhan penduduk. Kebutuhan energi listrik tersebut dipenuhi oleh pembangkit-pembangkit listrik berkapasitas besar yang umumnya terletak jauh dari titik beban. Dengan melewati sistem transmisi dan sistem distribusi, tak jarang akan menimbulkan banyak gangguan baik dari faktor internal maupun eksternal. Hal ini akan menurunkan tingkat keandalan sistem tenaga listrik dalam menyediakan kebutuhan listrik kepada konsumen. Demi meningkatkan keandalan sistem distribusi, dipasanglah pembangkit terdistribusi atau Distributed Generation sebagai alternatif pembangkit yang berkapasitas kecil dan dapat dipasang di jaringan distribusi. Menghitung keandalan sistem distribusi ini dilakukan menggunakan metode simulasi menggunakan ETAP dengan hasil peningkatan keandalan yang paling bagus sebesar 78,23 pada SAIFI dan 57,44 pada SAIDI ketika DG dipasang di setiap feeder yang berbeda di dalam satu gardu distribusi yang sama.

The need for electrical energy for everyday life will continue to increase along with population growth. The demand for electrical energy is met by large capacity power plants that are generally located far from the load point. By passing the transmission system and distribution system, sometimes there will be many disturbances both from internal and external factors. To reduce disturbance in order to improve the reliability of the distribution system, a Distributed Generation is installed as an alternative to a small capacity plant and can be installed in a distribution network. Calculating the reliability of the distribution system was performed using a simulation method using ETAP with the best result of reliability improvement of 78.23 at SAIFI and 57.44 on SAIDI when DG installed in each different feeder in the same distribution substation."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Danang Ramadhianto
"Di dalam suatu sistem tenaga listrik terdapat suatu faktor yang dinamakan faktor rugi rugi atau penyusutan dari energi. Penyusutan ini dapat ditemui di berbagai tempat pada jaringan tenaga listrik, mulai dari pembangkitan, transmisi, sampai dengan kepada distribusi kepada konsumen.
Terdapat dua jenis penyusutan pada sistem tenaga listrik, yaitu penyusutan teknis dan non-teknis. Penyusutan teknis adalah penyusutan yang terjadi sebagai akibat adanya impedansi pada peralatan pembangkitan maupun peralatan penyaluran dalam transmisi dan distribusi sehingga terdapat daya yang hilang. Penyusutan secara non teknis adalah susut yang disebabkan oleh kesalahan dalam pembacaan alat ukur, kesalahan kalibrasi di alat ukur, dan kesalahan akibat pemakaian yang tidak sah (pencurian) atau kesalahan kesalahan yang bersifat administratif lainnya.
Penyusutan daya tidak mungkin dihindari karena pada peralatan tidak mungkin memiliki tingkat efisiensi 100%, namun yang perlu mendapatkan perhatian adalah apakah penyusutan yang terjadi di dalam batas kewajaran. Sebagian besar penyusutan yang ada berada pada jaringan distribusi. Hal ini disebabkan karena pada jaringan distribusi, tegangan yang dipakai berada dalam rentang tegangan menengah dan tegangan rendah. Dimana untuk tegangan menengah dan tegangan rendah, arus yang mengalir pada jaringan nilainya besar untuk nilai daya yang sama, sehingga penyusutan energi juga akan besar.

On power ystem there is a factor known as losses factor of energy. These losses could be found in several places all over power network, from the power plant, transmission system, until the network end in distribution system.
Actually, there are two kinds of losses on power system network, which are technical losses and non-technica losses. Technical losses is losses that happen not only as an effect of impedance on power plant utilities,but also as an effect of impedance on equipment that used in transmission and distribution. In other side, the non-technical losses is a losses that caused by the mistake tha occurred when reading the measurement equipment, the mistake of equipment calibration, and a mistake that caused by illegal user or other administrative mistakes.
We can not avoid energy losses, because the equipment that we used can not possible have 100% efficiency, but there is one thng that should become our primary concern is the losses that occur are still in normal level or not. Mostly the energy losses happen on distribution network. Because on distribution network, the rate of voltage that being used is located in middle voltage and low voltage range. As we know, on middle voltage and low voltage, the amount of current that flow in the cable increasing for the same power. In the simple word, it will cause te energy losses bigger than before.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40523
UI - Skripsi Open  Universitas Indonesia Library
cover
Ardian Eko
"Pemanfaatan energi listrik semakin meningkat dari tahun ke tahun dan meluas aplikasinya, sehingga energi listrik kini menjadi energi penukar yang umum digunakan dalam berbagai bidang. Fenomena ini menyebabkan pembangkit-pembangkil bekerja dengan sistem interkoneksi untuk penyediaan kebutuhan listrik yang besar dengan keandalan tinggi.
Dalam suatu sistem tenaga listrik dengan interkoneksi banyak pembangkit, masalah stabilitas dalam menyalurkan daya listrik sangat penting. Gangguan pada sistem tenaga listrik dapat menyebahkan gangguan stabilitas sistem secara keseluruhan. Gangguan yang sifatnya kecil biasanya dapat diatasi oleh sistem itu sendiri. Namun gangguan yang cukup besar dan atau terjadi dalam waktu cukup lama dapat menyebabkan sistem menjadi tidak stabil yang mengakibatkan daya listrik tidak dapat tersalurkan ke beban dan sistem dimatikan unluk keamanan.
Tulisan ini membahas tentang perbaikan stabilitas sistem tenaga listrik dengan koordinasi metode pengkatuban cepat (fast valving) dan kendalt eksitasi pada pembangkit serempak yang-ter-interkoneksi dengan sistem. Dengan metode pengendalian terkoordinasi ini, pembangkit diharapkan dapat bertahan pada gangguan yang lebih panjang dan kembali ke stabilitasnya seperti keadaan sebelum gangguan sehingga sistem secara keseluruhan dapat kembali stabil.
Pengendalian terkoordinasi dilakukan dengan mentup katub masukan secara cepat sehingga daya mekanik masukan sistem berkurang, dan mengatur eksitasi sehingga daerah akselerasi yang terbentuk berkurang dan sebaliknya daerah deselerasi menjadi bertambah, dan pembangkit dapat distabilkan kembali. Hasil dari koordinasi pengendalian ini adalah pembangkit yang kembali dapat distabilkan setelah melewati satu atau dua putaran tidak serempak.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39996
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>