Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 80617 dokumen yang sesuai dengan query
cover
Susanti Sumampe
"Kulit bangunan dalam hal ini dinding merupakan elemen yang sangat berpengaruh pada kondisi termal dalam bangunan, karena merupakan bagian yang secara langsung berhubungan dengan iklim luar atau lingkungan luar sekitar bangunan. Jenis material yang digunakan untuk dinding akan sangat mempengaruhi kondisi termal yang diperoleh dalam bangunan.
Pada penelitian ini, material Bata beton sekam padi (BBSP) dan Bata beton murni (BBM) dicoba sebagai bahan penelitian yang dipilih untuk mengetahui material yang mempunyai efisien energi untuk mendapatkan temperature yang rendah dalam bangunan. Bata Beton Sekam Padi selanjutnya disebut BBSP adalah bahan bangunan alternatif untuk dinding, merupakan beton yang terbuat dari campuran semen dan pasir serta air dengan bahan tambahan sekam padi sebagai bahan dasarnya.
Bandung adalah salah satu kota didaerah tropis yang juga menjadi salah satu daerah penghasil padi di Indonesia. Banyaknya hasil panen tiap tahunnya membuat limbah padi yang berupa sekam akan semakin berlimpah, berkaitan dengan potensi sekam padi yang cukup besar yang dapat dimanfaatkan sebagai bahan dinding bangunan dan dapat digunakan masyarakat maka aspek kenyamanan (khususnya kondisi termal) sangatlah penting untuk di ketahui.
Metoda yang dilakukan pada penelitian ini adalah secara eksperimen yaitu melakukan pengujian material dilaboratorium dan pengukuran dengan menggunakan alat pengukur suhu termodak. Penelitian ini membandingkan antara temperature dinding BBSP dan dinding BBM meliputi nilai konduktivitas material, titik ukur, temperature puncak, waktu nyaman optimal, serta arah orientasi. Temuan yang diperoleh adalah bahwa secara umum pengaruh kondisi termal dinding BBSP lebih baik dari pada dinding BBM.

External part of building, i.e. wall is an influencing part to thermal condition, due to direct contact with its surroundings or its environment. Therefore, material used for wall will affect thermal condition of building.
In this research, Rice Hull Concrete Brick material and Pure Concrete Brick material are applied to investigate which material is energy efficient in order to obtain low temperature of building. Rice Hull Concrete Brick hencenforth is called BBSP which is an alternative material for wall, is a concrete made of cement, sand, water and additional rice hull.
Bandung is one city with tropical temperature and one big rice supplier in Indonesia. Annual massive harvesting has caused unused material i.e. rice hull in big amount as well. This residue material can be implemented as wall material of a building for maintaining low temperature.
Experimental method is used to investigate applied materials in the laboratory and then apply thermodack temperature measurement. The aim of this research is to compare between temperatures of wall that apply BBSP and BBM. In order to get this, several parameters are measured include material conductivity value, measurement point, peak temperature, optimum comfort time and oriented direction. It is found that thermal condition of BBSP wall is better or lower than wall applied BBM."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T24426
UI - Tesis Open  Universitas Indonesia Library
cover
Widiandoko Kasiarnoldi Putro
"Berkembangnya suatu negara dapat ditandai dengan meningkatnya secara kualitas maupun kuantitas bangunan di negara tersebut. Jika dilihat dari sudut pandang pembangunan, ini merupakan hal yang positif. Tetapi jika dari sudut pandang penggunaan energi, ini merupakan hal yang negatif. Karena gedung bertingkat menggunakan konsumsi energi yang tidak sedikit, khususnya energi listrik. Pada penelitian kali ini, akan coba menganalisa energi dan beban thermal yang ada pada gedung Dekanat FT-UI dengan menggunakan software yang bernama EnergyPlus versi 2.2. Energy Plus itu sendiri adalah sebuah program simulasi untuk menghitung besar energi dan besar pembebanan yang dimiliki oleh sebuah bangunan atau gedung. Input data yang diperlukan disini adalah data cuaca, temperatur, tata letak bangunan, inventaris, jumlah orang yang terdapat di gedung Dekanat itu sendiri. Hasil keluaran yang akan dianalisa pada penelitian kali ini adalah berapa besar sensible cooling energi dan sensible cooling rate pada tiaptiap ruangan di gedung Dekanat. Adapun peningkatan dari ke-2 hal tersebut diatas adalah dimulai pada jam ke-7 hinga jam ke-19. Hal ini disebabkan karena faktorfaktor yang terjadi terhadap gedung Dekanat itu sendiri, baik didalam maupun diluar gedung.

Evolution in a country must have development in their building structural. It looks positive when we take it from the development side. But from the energy uses, it?s a negative side. Because every building need a lot of energy for their use, especially electrical energy. So that in this research, we want to know how much about the energy and the thermal load from the building. Which building is Dekanat building in University of Indonesia. The tools that we use in this research is EnergyPlus version 2.2. EnergyPlus is an energy analysis and thermal load simulation program. Data input that we need are temperature, wheather, strategical of the building, inventory, and the people. From the output side, we want to know about the sensible cooling energy and sensible cooling rate at each room of the building, which we want to analyze. From the result, we know that its enhancement occur from 7 to 19 o?clock time based."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S50746
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohamad Ashadiansyah
"Penulisan ilmiah ini mengangkat masalah mengenai pernbuatan alat untuk menguji rangkaian solar thermal collector: Pembuatan alat ini akan menghasilkan alat yang dapat digunakan untuk menguji empat jenjs rangkaian variasi seri dan paralel dimana tiap rangkaian terdiri dari delapan kolektor tipe pelat datar. Empat rangkaian tersebut adalah Seri Semua, Seri-Seri di-Paralel, Paralel-Paralel di-Seri, dan Paralel-Paralel di-Paralel. Alat ini melakukan pengujian rangkaian secara bergantian menggunakan sistem buka/tutup katup-katup yang terpasang, sehlngga didapat sistem pengujian rangkaian kolektor yang eiisien terhadap waktu, tempat, dan biaya. Penulisan ini dibuat untuk mcrnudahkan proses penelitian perkiraan temperatur keluaran dari tiap susunan rangkaian yang difasilitasinya. Dengan debit maksimal sekitar 15,3 literlmenit, dan temperatur keluaran maksimal 47°C, alat ini menyimpulkan mngkaian Paralel-Paralel di-Paralel sebagai rangkaian optimal. Pemanfaatan penulisan ilmiah ini untuk penelitian rangkaian kolektor yang optimal serta sebagai referensi dalam perencanaan sistem pengujian rangkaian solar tbemral oollector yang lebih baik lagi.

This sciencetific writing discussed about making a device for testing solar thermal collector series. Making this device will produce a device which can be used for testing four kind of varied sene and paralel while each serie consists of eight flat plate collectors. Those Four had of series are All Senes; Paralel Senes, Serial Paralels, and Paralel Paralels. This device testing the senes (one sene per test) using the open/close system to the valves attached with the result of solar collector sene test system which is efficient to the work-tune; work-place; and work-cost Huis naruhg was made to fasilitate the research of outlet temperature prediction from each senre. With maximum flow-rate approximately 15,3 litres.minutes and maximum outlet temperature 47c, this device conclude the Paralel Paralels as the optimal serie. The utilization of this scientific writing rs for optimal collector serie researclr and as a reference for a better design of solar tlrencoal collector sene test system."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S37760
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nandy Setiadi Djaya Putra
Depok: UI Publishing, 2019
621.47 NAN t
Buku Teks  Universitas Indonesia Library
cover
Nandy Setiadi Djaya Putra
Depok: UI Publishing, 2019
621.47 NAN t
Buku Teks  Universitas Indonesia Library
cover
Muhammad Abiyyu
"Penelitian mengenai unjuk kerja solar termal kolektor terus mengalami kemajuan. Telah banyak inovasi dan temuan baru pada berbagai jenis kolektor non concentrating yang menyatakan peningkatan yang cukup signifikan dalam unjuk kerja solar termal kolektor.Olehkarena itu dibutuhkan suatu sistem sebagai fasilitas pengujian unjuk kerja, yang memiliki standar tertentu yang umum. Penelitian ini membahas sistem pengujian dengan standar ASHRAE-93 , yaitu meliputi perancangan fasilitas pendukung seperti frame, perhitungan instrumen-instrumen utama , dan pemilihan alat ukur yang sesuai dengan standar. Selanjutnya juga diberikan pembahasan mengenai proses assembling dan validasi alat-alat ukur.
Dilakukan pengujian dengan menggunakan kolektor jenis Evacuated Tube Sollar Collector, yang dipasang di atas gedung MRC FTUI. Pengujian dimulai pukul 09.00 WIB hingga 15.00 WIB dibawah sinar matahari. Data yang diproleh yaitu temperatur inlet kolektor, temperatur outlet, temperatur ambien dan radiasi matahari setiap sepuluh menit. Diperoleh bahwa efisiensi pada pengujian ini adalah sebesar 50,7 % dengan persamaan garis karakteristik efisiensi y = -3.1836x + 0.057.

Research on the solar thermal collector performance continues to progress. There have been many innovations and new findings on various types of non-concentrating collectors which state a significant increase in the performance of solar thermal collectors. Therefore, a system is needed as a performance testing facility, which has certain common standards. This study discusses the testing system with the ASHRAE-93 standard, which includes the design of supporting facilities such as frames, calculation of main instruments, and selection of measuring instruments according to standards. Furthermore, it is also given a discussion about the assembling process and validation of measuring instruments.
The test was carried out using the Evacuated Tube Sollar Collector , which is installed on the rooftop of the MRC FTUI building. The experiment was carried out at 09.00 WIB to 15.00 WIB under the sun . The data obtained are collector inlet temperature, collector outlet temperature, ambient temperature and solar radiation every ten minutes. It was found that the efficiency of Evacuated Tube Sollar Collector was 50.7% with the efficiency characteristic line equation y = -3.1836x + 0.057.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerardo Janitra Puriadi Putra
"Teknologi penyimpanan energi termal telah banyak digunakan untuk meningkatkan efisiensi sistem atau memanfaatkan limbah kalor. Phase change material (PCM) merupakan material tertentu yang dapat digunakan sebagai media penyimpan kalor dan tersedia dalam temperatur operasional yang luas. Molten salt merupakan salah satu PCM yang memiliki keunggulan temperatur operasional yang sangat tinggi. Kalor yang tersimpan di PCM selanjutnya dapat digunakan untuk berbagai utilitas seperti pembangkitan energi. Dalam penelitian ini, simulasi pemadatan garam cair komersial dari PlusICE, yaitu H500 dengan temperatur operasional 500 °C. Simulasi dilakukan menggunakan software COMSOL Multiphysics dengan lima variasi penyerapan fluks kalor yang mensimulasikan penyerapan kalor dari mesin stirling, dari 1kW/m2 hingga 5kW/m2 dengan kenaikan 1kW/m2 per variasi dan asumsi penyerapan kalor konstan. Hasil simulasi menunjukkan bahwa solidifikasi yang terjadi pada domain PCM dimulai dari batasan pipa dengan aliran searah gravitasi dan akan berbelok pada titik tertentu. Terjadinya aliran pada proses solidifikasi adalah karena adanya perbedaan temperatur pada domain PCM dan perpindahan kalor secara konveksi yang terjadi secara alami. Domain PCM akan tersolidifikasi dalam jangka waktu 1039 menit untuk variasi 1kW/m2, 539 menit untuk variasi 2kW/m2, 371 menit untuk variasi 3kW/m2, 289 menit untuk variasi 4kW/m2, dan 237 menit untuk variasi 5kW/m2. 3.Total energi kalor yang dapat ditransfer oleh PCM hingga tersolidifikasi sepenuhnya adalah 313,19 kJ untuk penyerapan 1kW/m2; 324,95 untuk penyerapan 2kW/m2; 335,5 untuk penyerapan 3kW/m2; 348,46 untuk penyerapan 4kW/m2 dan 357,20 untuk penyerapan 5kW/m2.

Thermal energy storage technologies have been widely used to increase system efficiency or to utilize waste heat. Phase change material (PCM) is a certain material that can be used as a heat storage medium and is available in a wide range of operating temperaturs. Molten salt is one of the PCMs that has the advantage of a very high operating temperatur. The heat stored in the PCM can then be used for various utilities such as energy generation. In this study, simulating the solidification of commercial molten salt from PlusICE, namely H500 with an operating temperatur of 500 °C. The simulation was carried out using the COMSOL Multiphysics software with five variations of heat flux absorption simulating heat absoption from the stirling engine, from 1kW/m2 to 5kW/m2 with an increment of 1kW/m2 per variation and assuming constant heat absorption. The results show that the solidification that occurs in the PCM domain starts from the boundary of the pipe with the flow in the direction of gravity and will turn at a certain point. The occurrence of flow in the solidification process is due to the temperatur difference in the PCM domain and heat transfer by convection which occurs naturally. The PCM domain will consolidate within 1039 minutes for the 1kW/m2 variation, 539 minutes for the 2kW/m2 variation, 371 minutes for the 3kW/m2 variation, 289 minutes for the 4kW/m2 variation, and 237 minutes for the 5kW/m2 variation. 3. The total heat energy that can be transferred by the PCM for each heat flux absorption until it is fully solidified is 313.19 kJ for 1kW/m2; 324.95 for 2kW/m2; 335.5 for 3kW/m2; 348.46 for 4kW/m2 and 357.20 for 5kW/m2."
Depok: 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rafael Pascalis Tanudio
"Proses perengkahan katalitik termal merupakan salah satu proses untuk mengolah minyak hewani menjadi bahan bakar bio. Pada penelitian ini bahan bakar bio jenis renewable diesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO. Proses sintesis renewable diesel dilakukan menggunakan reaktor autoclave berpengaduk diberikan perlakuan yang berbeda tiap prosesnya dengan perbedaan suhu (375℃ dan 400℃) untuk sampel dan jumlah katalis yang digunakan sebanyak 3 wt% dan 5 wt% dari
umpan yang digunakan yaitu lemak sapi sehingga didapatkan 4 sampel renewable diesel (RD-1 hingga RD-4) dengan harapan mendapatkan yield dan konversi, sehingga dapat ditentukan kondisi operasi yang optimal untuk sintesis renewable diesel. Setelah berhasil disintesis produk cair organik didistilasi untuk mendapatkan fraksi renewable diesel dan dikarakterisasi berdasarkan Standar Nasional Indonesia (SNI) untuk melihat nilai viskositas, bilangan asam, densitas, titik beku, dan bilangan iodin, serta menggunakan
GC-MS untuk mengidentifikasi fraksi komponen dan FTIR untuk mengidentifikasi gugus fungsi dari hasil sintesis. Renewable diesel akan dibandingkan antar sampel untuk memperoleh karakteristik terbaik yang akan dibandingkan dengan bahan bakar solar. Dari hasil pengujian diperoleh spesifikasi renewable diesel seperti densitas, viskositas, bilangan iodin, bilangan asam, dan titik beku sudah memenuhi standar SNI, namun untuk spesifikasi bilangan asam pada sampel RD-1 dan RD-3 belum memenuhi SNI. Nilai yield dan selektivitas tertinggi diperoleh pada sampel RD-4 dengan suhu 400℃ dan katalis CaO sebanyak 5% wt, diperoleh selektivitas sebesar 91,83% dan yield sebesar 44,3% dengan sisa oksigenat sebesar 16,99%
Catalytic thermal cracking process is one of the processes to convert animal fats into biofuel. In this study, renewable diesel is synthesized from animal fats or more specifically beef tallow in a reactor with the help of CaO catalyst. Renewable diesel
synthesis process is carried out using a stirred autoclave reactor with different treatment for each process with differences in temperature (375℃ and 400℃) and the amount of catalyst used is 3% by feed weight and 5% by feed weight of beef tallow, hence 4 (four) renewable diesel samples denominated by RD-1, RD-2, RD-3, and RD-4, to obtain different results of yield and conversion so that the optimal condition for renewable diesel synthesis is obtained. Renewable diesel was characterized based on the Standar Nasional Indonesia (SNI) to see the value of viscosity, acid number, density, freezing point, and iodine number. GC-MS and FT-IR analytics is also used to identify fraction component of sample and to identify functional groups of the product. Renewable diesel will be compared between samples to obtain the best characteristics that will be compared with
conventional diesel fuel. The research resulting in the specifications of renewable diesel
such as density, viscosity, acid number, freezing point and iodine number which meet the
SNI standard, but the acid number specifications for RD-1 and RD-3 samples do not meet SNI standard. The highest yield and selectivity values were obtained in the sample RD-4 with a temperature of 400℃ and a CaO catalyst of 5% wt, obtained selectivity of 91,83% and yield of 44,3% with a residual oxygenate of 16,99%.
"
Depok : Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Idrus Alhamid
"Sektor bangunan di Indonesia membutuhkan sistem pendingin udara untuk menciptakan zona kenyamanan termal. Secara umum, energi listrik berasal dari pembakaran bahan bakar fosil, adalah bentuk energi tidak terbarukan dan memiliki masalah lingkungan. Di Indonesia, energi matahari dapat dimanfaatkan sepanjang tahun. Pemanfaatan energi matahari untuk sistem pendingin oleh panas memiliki keuntungan yang signifikan; yaitu sumber energi bersih, tersedia tanpa biaya langsung dan dapat diakses secara proporsional ketika beban pendinginan meningkat. Energi matahari untuk sistem absorption chiller di Indonesia adalah salah satu teknologi yang menjanjikan yang dapat memecahkan masalah energi dan lingkungan. Bekerja bersama Kawasaki Thermal Engineering dan Waseda University, Universitas Indonesia telah merancang dan membangun Solar Thermal Cooling System (STCS) pertama di Indonesia. Sistem ini menggunakan mesin chiller penyerapan efek-tunggal-ganda; terletak di gedung Manufactur Research Center (MRC), Fakultas Teknik Universitas Indonesia. Dari tipikal data uji lapangan, STCS dapat mengurangi konsumsi energi primer antara 11 dan 48% dibandingkan dengan kompresi uap dengan COP 3,1. Selain itu, disain dan penelitian ini juga memprediksi kinerja sistem ini di enam kota besar di Indonesia berdasarkan data uji lapangan: Jakarta, Surabaya, Medan, Yogyakarta, Makassar, dan Bali. Rata-rata dalam satu bulan untuk enam kota adalah 25,8 MWh pengurangan konsumsi gas setara dengan pengurangan 13,8 ton emisi CO2.

Building sector in Indonesia requires air conditioning systems to create comfort zones. Generally powered by fossil fuel combustion, electricity poses environmental issues as a non-renewable form of energy. In Indonesia, solar energy remains accessible throughout the year. Utilizing solar energy for heat-driven cooling systems offers significant advantages: a clean energy source, available at no direct cost, and proportionally accessible with increased cooling demand. Solar energy for absorption chiller systems in Indonesia presents a promising technology to address energy and environmental concerns. In collaboration with Kawasaki Thermal Engineering and Waseda University, the University of Indonesia has designed and constructed Indonesia's first Solar Thermal Cooling System (STCS). This system uses a double-effect absorption chiller, located at the Manufactur Research Center (MRC) building, Faculty of Engineering, Universitas Indonesia. Field test data indicates that the STCS can reduce primary energy consumption between 11 and 48% compared to vapor compression systems with a COP of 3.1. This design and research predict the system's performance in six major cities in Indonesia—Jakarta, Surabaya, Medan, Yogyakarta, Makassar, and Bali. On average, for these six cities in a month, there's a reduction of 25.8 MWh in gas consumption, equivalent to a decrease of 13.8 tons of CO2 emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Delgado, J.M.P.Q.
"This short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances.
Based on the phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and liquid–gas PCMs. Of these the solid–liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage.
The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key.
With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied."
Switzerland: Springer Cham, 2019
e20502331
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>