Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 129143 dokumen yang sesuai dengan query
cover
Tri Hadi Jatmiko
Fakultas Teknik Universitas Indonesia, 2008
T24252
UI - Tesis Open  Universitas Indonesia Library
cover
Tri Hadi Jatmiko
"Sintesis Fischer-Tropsch (FT) merupakan proses penting dalam industri untuk mengubah gas sintesis yang dihasilkan dari proses reformasi kukus, parsial oksidasi atau autotermal reforming menjadi senyawa hidrokarbon dan oksigenat. Saat ini sintesis Fischer-Tropsch merupakan suatu pilihan untuk memproduksi bahan bakar transportasi yang ramah lingkungan dan sebagai bahan baku kimia. Sintesis Fischer Tropsch dapat dilakukan dengan menggunakan reaktor unggun tetap, reaktor slurry kolom gelembung atau reaktor terfluidisasi. Pemodelan dan simulasi reaktor untuk sintesis Fischer Tropsch telah dilakukan oleh para peneliti sebelumnya diantaranya Muharam, (1995) memodelkan proses FT pada reaktor sluri tipe kolom gelembung dengan kinetika orde pertama untuk H2 dan orde nol untuk CO. Fernandes (2006) melakukan pemodelan reaktor unggun tetap untuk proses FT dengan model aliran sumbat (plug flow) tanpa memperhitungkan faktor dispersi dan konveksi. Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk sintesis Fischer-Tropsch mengacu pada kinetika Raje dan Davis. Faktor hidrodinamika berupa faktor konveksi dan dispersi pada arah aksial diperhitungkan untuk mendapatkan hasil simulasi yang mendekati kondisi sebenarnya pada reaktor di industri. Model pseudohomogen reaktor unggun tetap untuk reaksi Fischer Tropsch dapat memprediksi kinerja reaktor dengan baik. Kenaikan rasio H2/CO dari 0,5 hingga 2 menunjukan peningkatan konversi CO yang besar, yaitu dari 0,301 menjadi 0,959. Sedangkan kenaikan rasio H2/CO dari 2 hingga 4 hanya meningkat konversi dari 0,959 menjadi 0,983. Kenaikan temperatur dari 150 °C hingga 350 °C meningkatkan konversi CO dari 0,95 menjadi 0,97. Tekanan total tidak terlalu signifikan pengaruhnya terhadap reaksi. Kenaikan space velocity dari 1,5 menjadi 4 menyebabkan konversi CO menjadi turun dari 0,965 menjadi 0,906. Bilangan Damkohler berbanding lurus dengan temperatur dan tidak terpengaruh dengan perubahan tekanan. Bilangan Peclet dipengaruhi baik oleh temperatur dan space velocity. Kata kunci : Fischer Tropsch, Reaktor Unggun Tetap, Model, Simulasi.

Fischer-Tropsch synthesis (FTS) is important process to produce hydrocarbon and oxygenat from synthetic gas produced by steam reforming, partial oxidation or autothermal reforming Today FTS is the choice to produce environment friendly transport fuel and feedstock. FTS carry on fixed bed reactor, slurry bubble column or fluidized reactor. Previous reactor modeling and simulation for FTS by Muharam (1995) is slurry bubble column with kinetic first order for H2 and zero order for CO. Modeling fixed bed reactor for FTS by Fernandes (2006) assume plug flow neglect dispersion and convection. In this research a model fixed bed reactor for FTS with kinetic from Raje and Davis (1997) was developed. Convection and dispersion on axial direction was take account in order to get good result and close to the real condition in industry. Pseudohomogeneous model fixed bed reactor for FTS can give good prediction for performance of reactor. Increasing H2/C0 ratio from 0,5 to 2 raise CO conversion significant from 0,301 to 0,959. However increasing 1-19/C0 ratio from 2 to 4 only raise the conversion from 0,959 to 0,983. Increasing the initial operation temperature from 150 °C to 350 °C increase the CO conversion from 0,95 to 0,97. Initial total pressure not significant affect the reaction. Increasing space velocity from 1,5 to 4 cause the CO conversion decrease from 0,965 to 0,906. Damkohler number increase with increasing temperature and not affected by pressure. Peclet number is affect by temperature and space velocity. Keyword : Fischer Tropsch synthesis, Fixed Bed Reactor, Model, Simulation."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T24252
UI - Tesis Open  Universitas Indonesia Library
cover
Ibnu Sultan A.
"Sintesis Fischer-Tropsch (FT) merupakan proses penting dalam industri untuk mengubah gas sintesis yang dihasilkan dari proses reformasi kukus, parsial oksidasi atau autotermal reforming menjadi senyawa hidrokarbon dan oksigenat. Saat ini sintesis Fischer-Tropsch merupakan suatu pilihan untuk memproduksi bahan bakar transportasi yang ramah lingkungan dan sebagai bahan baku kimia. Sintesis Fischer Tropsch dapat dilakukan dengan menggunakan reaktor unggun tetap, reaktor slurry kolom gelembung atau reaktor terfluidisasi.
Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk sintesis Fishcer-Tropsch mengacu pada kinetika Bo-Tao Teng 2005. Faktor hidrodinamika berupa konveksi dan dispersi pada arah aksial dan radial diperhitungkan untuk memperoleh hasil simulasi yang mendekati kondisi riil. Validasi model dilakukan dengan data-data eksperimen skala lab. Model pseudohomogen reaktor unggun tetap untuk reaksi Fischer Tropsch dapat memprediksi kinerja reaktor dengan baik. Kenaikan rasio H2/CO 1 dari 2 hingga menunjukan peningkatan konversi CO yang besar, yaitu dari 6.9% menjadi 20.2%. Kenaikan temperatur dari 400 K hingga 410 K meningkatkan konversi CO dari 6.9% menjadi 8.3%. Kenaikan tekanan akan meningkatkan nilai konversi CO yaitu dari 1 bar menjadi 5 bar meningkatkan konversi CO 6.9% menjadi 27%.

Synthesis of Fischer-Tropsch (FT) is an important process in the industry to convert the synthesis gas produced from the process of steam reforming, partial oxidation or reforming autotermal into hydrocarbons and oxygenate. Currently the Fischer-Tropsch synthesis is an option to produce transportation fuels that are environmentally friendly and as chemical raw materials. Fischer Tropsch synthesis can be performed using fixed bed reactors, slurry bubble column reactor or a fluidized reactor.
In this study the modeling and simulation of fixed bed reactor for Fishcer-Tropsch synthesis refers to the kinetics of Bo-Tao Teng 2005. Factor in the form of convection and hydrodynamic dispersion in axial and radial direction calculated to obtain the simulation results are close to real conditions. Model validation performed by the data lab-scale experiments. Model pseudohomogen fixed bed reactor for Fischer-Tropsch reaction can predict the performance of the reactor well. H2/CO a rise in the ratio of 2 to show a large increase in CO conversion, which was from 6.9% to 20.2%. The increase in temperature from 400 K to 410 K increases CO conversion of 6.9% to 8.3%. The increase in pressure will increase the value of the conversion of CO is from 1 bar to 5 bar of CO conversion increase 6.9% to 27%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S899
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuswan Muharam
Depok: Fakultas Teknik Universitas Indonesia, 1995
T41228
UI - Tesis Membership  Universitas Indonesia Library
cover
Febrini Cesarina
"Dekomposisi katalitik metana merupakan salah satu metode yang paling sering digunakan dalam memproduksi carbon nanotube (CNT). Penggunaan reaktor unggun tetap untuk reaksi dekomposisi katalitik metana cukup banyak diminati karena desainnya yang sederhana dan ekonomis. Agar kinerja reaktor yang optimal dapat diperoleh, perlu dilakukan serangkaian uji coba terhadap pengaruh dari berbagai kondisi operasi melalui pemodelan dan simulasi.
Pada penelitian ini, dibentuk suatu pemodelan dan simulasi reaktor unggun tetap untuk reaksi dekomposisi katalitik dengan memvariasikan berbagai parameter operasi yang dapat mempengaruhi kinerja reaktor. Konversi metana dan yield hidrogen yang dapat dicapai pada saat reaksi 60 menit adalah sebesar 34.4% dan 42.7%. Kenaikan pada tekanan, laju alir, komposisi umpan dan radius partikel akan memperkecil konversi dan yield, sementara kenaikan pada temperatur umpan berlaku sebaliknya. Kondisi operasi yang memberikan konversi dan yield terbesar, yaitu 43.3% dan 51.5%, adalah pada saat temperatur umpan sebesar 1023 K dengan radius partikel sebesar 0.10 mm.

Catalytic decomposition of methane (CDM) is one of the most popular method used in producing carbon nanotube (CNT). The use of fixed bed reactor in catalytic reaction is common for its simple design and low prices. In order to get an optimal condition to the reactor, observing which parameters gives influence most to the reactor is needed to be done by modelling and simulation.
This thesis is proposed a modelling and simulation of fixed bed reactor for catalytic decomposition of methane by varying the values of operating parameters which influence the reactor performance. The methane conversion dan hydrogen yield obtained at 60 minutes reaction are 34.4% dan 42.7%. The increasing feed pressure, velocity, particle radius and composition decrease conversion and yield significantly, while the decreasing feed temperature results in opposite. An optimal condition obtained when using feed temperatur at 1023 K and radius particle at 0.10 mm, which gives highest conversion and yield, 43.3% and 51.5% in result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32582
UI - Tesis Membership  Universitas Indonesia Library
cover
Ricky Kristanda Suwignjo
"Pada penelitian ini akan dilakukan pemodelan kinetika untuk sintesis Fischer Tropsch dengan tekanan operasi mencapai 20 bar dengan variasi rasio H2/CO 1,0 hingga 2,1 serta penambahan logam rhenium sebagai promotor. Mekanisme adsorpsi isotermis Langmuir digunakan untuk menyusun model kinetika. Pemodelan kinetika sintesis Fischer Tropsch dengan katalis kobalt berpenyangga alumina yang sudah ada saat ini sesuai untuk tekanan kurang dari 10 bar.
Hasil penelitian ini menunjukkan bahwa mekanisme reaksi yang sesuai adalah mekanisme insersi CO dengan reaksi hidrogenasi komponen COs oleh Hs sebagai tahap penentu laju. Persamaan model yang sesuai untuk mekanisme tersebut mengandung 3 konstanta, yaitu konstanta kesetimbangan tahap adsorpsi asosiatif reaktan CO (K1), konstanta kesetimbangan tahap adsorpsi disosiatif reaktan H2 (K2), dan konstanta laju tahap hidrogenasi COs oleh Hs (k3). Kenaikan rasio H2/CO menyebabkan rata-rata penurunan nilai K1 dan K2 masing-masing sebesar 53-94% dan 13-82% serta kenaikan k3 sebesar 73-421% pada model kinetika tersebut. Kenaikan rasio H2/CO menyebabkan peningkatan konversi reaktan dan selektivitas komponen produk CH4. Sementara, penambahan logam rhenium tidak menyebabkan perubahan nilai konstanta pada model kinetika tersebut (%selisih nilai konstanta lebih kecil dari 10%). Penambahan logam rhenium (0,05%Re-12%Co/Al2O3) memberikan pengaruh sebagai promotor struktural, yaitu hanya meningkatkan jumlah active site melalui peningkatan dispersi katalis kobalt sehingga konversi meningkat namun selektivitas produk tetap. Variasi rasio umpan H2/CO dan penambahan logam rhenium (0,05%Re-12%Co/Al2O3) tidak menyebabkan perubahan mekanisme reaksi.

This research will build-up a kinetic model for Fischer Tropsch synthesis using alumina supported cobalt catalyst operated in 20 bar with variation of H2/CO syngas ratio from 1.0 to 2.1 and also addition of rhenium metal as promoter in cobalt catalyst. Langmuir isothermic adsorption mechanism is a common method to build-up a kinetic model. Existing kinetic model of Fischer-Tropsch synthesis using alumina supported cobalt catalyst is valid for operating pressure less than 10 bar.
The result of this research showed that CO insertion mechanism with hydrogenation step of COs by Hs component as the rate-limiting step is valid for this Fischer Tropsch synthesis condition. Kinetic equation for this mechanism consists of 3 constants, equilibrium constant for assosiative adsorption for CO reactant (K1), equilibrium constant for dissociative adsorption for H2 reactant (K2), and rate constant for hydrogenation COs by Hs (k3). Higher H2/CO ratio will averagely decrease K1 and K2 by amount 80% and 40 %, respectively, and increase k3 by amount 168 % in those kinetic equation. Higher reactant conversion and CH4 product selectivity is resulted in higher H2/CO syngas ratio. Addition of rhenium metal (0.05%Re-12%Co/Al2O3) give effect as structural promoter, which only increase active site amount through the increase of cobalt catalyst dispersion. Rhenium promoter in cobalt catalyst only increase reactant conversion but not change the product selectivity. Variation of H2/CO syngas feed ratio and addition of rhenium metal (0.05%Re-12%Co/Al2O3) will not change the reaction mechanism occurred.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43231
UI - Tesis Membership  Universitas Indonesia Library
cover
Ismail
"Reaktor unggun tetap merupakan salah satu reaktor yang paling sering digunakan untuk reaksi katalitik. Dalam rangka merealisasikan suatu reaktor komersial, diperlukan informasi pengaruh kondisi operasi terhadap kinerja reaktor. Penelitian ini bertujuan untuk mendapatkan informasi mengenai pengaruh kondisi operasi terhadap kinerja reaktor unggun tetap untuk reaksi hidrogenasi karbon dioksida menjadi dimetil eter melalui pemodelan dan simulasi. Simulasi dibantu dengan program Comsol Multiphysics. Model yang digunakan adalah model heterogen non-isotermal satu dimensi. Dalam penelitian ini divariasikan tekanan umpan, laju alir umpan, temperatur umpan, komposisi umpan, radius katalis dan juga panjang reaktor untuk melihat pengaruh variabel-variabel tersebut terhadap kinerja reaktor. Kenaikan tekanan umpan menaikkan konversi karbon dioksida dari 26% pada tekanan 2 MPa menjadi 37% pada tekanan 6 MPa dan menaikkan yield DME dari 15% menjadi 33%. Suhu umpan optimal dengan konversi karbon dioksida dan yield dimetil eter tertinggi adalah 500K. Kenaikan laju alir akan memperkecil konversi karbon dioksida dari 27,5% pada laju alir 0,3 mm/s menjadi 24% pada laju alir 1.1mm/s dan menurunkan yield DME dari 19% ke 15%. Kenaikan laju rasio H2/CO2 akan menaikkan konversi karbon dioksida dari 5% pada perbandingan 1 menjadi 31% pada rasio 5 dan dan yield DME dari 4% menjadi 22%. Penambahan panjang reaktor lebih dari 0.4m tidak menaikkan konversi karbon dioksida secara signifikan. Penurunan radius katalis akan menaikkan konversi karbon dioksida dari 17% pada radius katalis 7 mm menjadi 27% pada radius katalis 0,7 mm.

Fixed bed reactor is one of the most frequently used reactors for catalytic reactions. In order to realize a commercial reactor, it is necessary to know the influence of operating conditions on reactor performance. This study aimed to obtain information about the influence of operating conditions on the performance of fixed bed reactor for carbon dioxide hydrogenation reactions to dimethyl ether through modeling and simulation. Comsol Multiphysics program is used to simulate the reactor. The model used is non-isothermal heterogeneous onedimensional model. In this study variables of feed pressure, feed flow rate, feed temperature, feed composition, catalyst diameter and also the length of the reactor are varied to see the influences of the variables on reactor performance. Increasing feed pressure increase the carbon dioxide conversion from 26% at a pressure of 2MPa to 37% at a pressure of 6 MPa and DME yield increase from 15% to 33%. Optimum feed temperature for the conversion of carbon dioxide and the yield of dimethyl ether is 500K. Increasing flow rate decreases the conversion of carbon dioxide from 27.5% at a flow rate of 0.3mm / s to 24% at a flow rate of 1.1mm / s and lowers the DME yield from 19% to 15%. Increasing the H2/CO2 ratio increases carbon dioxide conversion from 5% at ratio 1 to 31% at 5 and of DME yield from 4% to 22%. The addition of the reactor length beyond 0.4 m does not increase the carbon dioxide conversion significantly. Decreasing radius of catalyst will increase the carbon dioxide conversion from 17% at a radius of 7mm to 27% at a radius of 0.7 mm."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51957
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuswan Muharam
"ABSTRAK
Dalam penelitian ini dilakukan pemodelan reaktor sharry tipe kolom gelembung untuk sintesis Fischer-Tropsch, Fenomena-fenomena hidrodinamika yang ada di dalam reaktor dipertimbangkan. Pola aliran bidrogen fasa gas dan fhsa cair dimodelkan dengan rnenggunakan konsep dispersi aksiai. Persamaan laju reaksi yang digunakan adalah orde pertama unluk hidrogen. Persamaanpersamaan yang diperoleb menipakan model yang sama dengan yang dikembangkan sebelumnya oleh Deckwer dkk [1982}.
Model yang telah dikembangkan diselesaikan dengan meuggunakan metode kolokasi ortogonal eriam titik. Persamaan-persamaan aijabar tak-linear yang diperoleh diselesaikan dengan metode iterasi Newton-Raphson Program yang dikembangkan selain digunakan urituk menghitung profil-profil konsentrasi hidrogen dan katalis, temperatur, kecepatan gas, konversi dan space time yield, juga unifik mensimulasikan pengaruh temperatur, tekanan, kecepatan gas umpan., rasio CO/H2 umpan, diameter reaktor, panjang retor dan konsentrasi katalis terhadap kineja reactor.
Dari perhitungan, diperoleh bahwa konversi gas sintesis naik dengan naiknya temperatur dan tekanan. Penurunan konversi gas sintesis yang sangat tajam teijadi bila kecepatan gas umpan dinaikkan dan 8 hingga 12 cmldetik. Apabila rasio CO/H2 dinaikkan dad 1,3 hingga 2,5 maka konversi gas sintesis berkurang sekitar 45,78% dan harga awalnya.
Konversi gas sintesis berkurang dad 0,882 menjacli 0,778 jika diameter retor dinaikkan dan 100 hingga 500 cm. Batas panjang reaktor yang efektifterjadi apabila rasio panjang terhadap diameter reaktor sama dengan 10. Jika konsentrasi katalis bergerak naik dad 8 hingga 20% berat, maka konversi gas sintesis naik sekitar 103,35% dañ harga awalnya.
Perubahan hold up fasa gas yang disebabkan oleh penabahan kondisi operasi, geometri dan konsentrasi katalis memberikan pengaruh yang lebih sensitif terhadap konversi gas sintesis dibandingkan parameter-parameter hidrodinamika dan perpindahan lainnya.
Bila kenaikan perpindahan massa gas-cair dan panas disebabkan oleb kenaikan temperatur dan tekanan maka dapat menyebabkan konversi gas sintesis naik. Perhitungan menggunakan metode kolokasi ortogonal sembilan titik memakan waktu dua kali lebih lama dibandingkan enam titik namun memberikan kesalahan 8304 kali lebih sedikit dan titik-titik penyelesaian Iebih banyak.

ABSTRACT
In this research a model of slurry bubble colu reactors used for Fischer-Tropsch synthesis was developed. The relevant hydrodynamic phenomenon in the reactors were considered. Flow patterns of gas and liquid phase were modeled using an axial dispersion concept. The model was based on a kinetic rate expression of first order for hydrogen and zero order for carbon monoxide. The differential equations obtained are similar to that of Deckwer [1982].
The model was solved using six points orthogonal -collocation --method to get eighteen non-linear algebraic equations that solved numerically by iterative Newton Raphson method. A program was developed to obtain profiles of hydrogen and catalyst concentration, temperature, gas velocity, synthetic gas conversion and space time yield, and to simulate the influences of temperature, pressure, inlet gas velocity, inlet CO/H2 ratio, diameter and length of reactor as well as catalyst concentration on the reactor performances.
It was found that synthetic gas conversion increases with increasing temperature and pressure. Art extreme decrease in synthetic gas conversion was obtained when increasing inlet gas velocity from 8 to 12 cm/s. When inlet CO/H2 ratio was raised from 1.3 to 2.5, synthetic gas conversion reduces about 45.78%.
Synthetic gas conversion decreases from 0.882 to 0.778 as the reactor diameter was increased from 100 to 500 cm. The limit of effective reactor leught is provided when ratio of the reactor lenght to the reactor diameter is 10. When the catalyst concentration was moved from 8 to 20 % vit., synthetic gas conversion raises about 103.35%.
A change in gas phase hold up due to the changes in operating conditions, geometry and catalyst concentration gives more sensitive effects on synthetic gas conversion than the other hydrodynarnic and transport parameters.
When an increase in gas-liquid mass and heat transfer due to increase in temperature and pressure, an increase in synthetic gas conversion was occurred. The calculation of nine collocation points takes twice longer time than that of six collocation points, but gives less err or of 8304 time and more solution points.
"
1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Resti Ayu Khairina
"Pada penelitian ini akan dilakukan pemodelan kinetika untuk sintesis Fischer Tropsch dengan tekanan operasi mencapai 20 bar dengan variasi rasio H2/CO 1,0; 1,5; dan 2,1 serta dengan perubahan logam ferum sebagai promotor pada kondisi operasi yang sama, hanya dengan variasi rasio H2/CO 1,0. Mekanisme adsorpsi isotermis Langmuir digunakan untuk menyusun model kinetika. Pemodelan kinetika sintesis Fischer Tropsch dengan katalis kobalt maupun ferum yang sudah ada saat ini sesuai untuk tekanan kurang dari 10 bar.
Hasil penelitian ini menunjukkan bahwa mekanisme reaksi yang sesuai adalah mekanisme insersi CO dengan reaksi hidrogenasi komponen COs oleh Hs sebagai tahap penentu laju. Persamaan model yang sesuai untuk mekanisme tersebut mengandung 3 konstanta, yaitu konstanta kesetimbangan tahap adsorpsi asosiatif reaktan CO (K1), konstanta kesetimbangan tahap adsorpsi disosiatif reaktan H2 (K2), dan konstanta laju tahap hidrogenasi COs oleh Hs (k3). Kenaikan rasio H2/CO menyebabkan rata-rata penurunan nilai K1 dan K2 masing-masing sebesar 90% dan 56% serta kenaikan k3 sebesar 68% pada model kinetika tersebut. Kenaikan rasio H2/CO menyebabkan peningkatan konversi reaktan dan selektivitas komponen produk CH4. Sementara, untuk perubahan promotor menjadi logam ferum, mekanisme reaksi yang sesuai juga mengakomodasi dari mekanisme insersi CO, serta pada penelitian ini memiliki nilai selektivitas yang lebih tinggi untuk tiap spesi produk CH4, C2-, C2=, C3-, dan C3= , lebih khususnya selektivitas katalis ferum terhadap spesi olefin akan lebih tinggi dibandingkan spesi produk parafin.

In this study, the kinetics for Fischer Tropsch synthesis with operating pressures up to 20 bar with a variation of the ratio of H2/CO 1,0; 1,5; and 2,1 will be modeled as kinetic rate equation using cobalt catalyst and also ferum catalyst at the same operating conditions, only ferum has the only variation of the ratio of H2/CO 1,0. Langmuir isotherm adsorption mechanism used to develop kinetic models. Fischer-Tropsch synthesis kinetics modeling with cobalt corresponding to less than 10 bar in term of pressure.
The results of this study indicate that the corresponding reaction mechanism is insertion mechanism CO hydrogenation reaction components COs by Hs as the rate determining step. Equation appropriate model for the mechanism contains three constants, namely associative adsorption equilibrium constant phase reactants CO (K1), dissociative adsorption equilibrium constant phase reactant H2 (K2), and the rate constant of hydrogenation stage COs by Hs (k3). The increase in the ratio of H2/CO resulted in an average decrease in the value of K1 and K2 respectively by 90% and 56% and 68% increase in k3 on the kinetic model. The increase in the ratio of H2/CO causes an increase in the conversion of the reactant and product components CH4 selectivity. Meanwhile, when the promoter changed to ferum, the corresponding reaction mechanism also accommodates from CO insertion mechanism, and in this study had a higher selectivity values for each product species CH4, C2, C2=, C3-, and C3=, more especially an iron catalyst selectivity to olefins will be higher species than species paraffin products.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58184
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lisa Marie Zulkarnain
"Di tengah fenomena pemanasan global, simulasi proses sintesis dimetil eter dapat dikembangkan sebagai acuan dalam aplikasi kehidupan nyata. Parameter operasi yang menghasilkan paling DME yang meliputi tekanan inlet reaktor dari 18 atm, reaktor suhu inlet 533 K, tekanan distilasi 8 atm, kecepatan arus masuk 0,408 m / s, dan panjang reaktor 4 meter. Di bawah parameter tersebut, 10,7 mol / s dari dimetil eter diproduksi, dengan hasil total 47% dan konversi metanol 90%. Penambahan aliran recycle meningkatkan hasil sebesar 2%. simulasi ini kemudian bervariasi berdasarkan tekanan, suhu, kecepatan arus masuk, dan panjang reaktor, dimana suhu mempengaruhi konversi sebesar 76% maksimal.

In the midst of the global warming phenomenon, a simulation of dimethyl ether synthesis process can be developed as a reference in real-life application. The operating parameters that produces the most DME include the reactor inlet pressure of 18 atm, reactor inlet temperature of 533 K, distillation pressure of 8 atm, inflow velocity of 0.408 m/s, and reactor length of 4 meters. Under these parameters, 10.7 mol/s of dimethyl ether is produced, with total yield of 47% and methanol conversion of 90%. The addition of recycle stream increases the yield by 2%. The simulation is then varied based on pressure, temperature, inflow velocity, and reactor length, wherein temperature affect the conversion by 76% at maximum."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64808
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>