Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 106763 dokumen yang sesuai dengan query
cover
I Made Djaja
"Rumah sakit merupakan tempat untuk menyembuhkan orang sakit. Akan tetapi, rumah sakit juga memiliki kemungkinan memberikan dampak negatif. Dampak negatif yang dapat terjadi salah satunya adalah pencemaran air akibat dari pembuangan limbah yang dihasilkan tidak dikelola dengan baik. Tujuan dari penelitian adalah untuk mengetahui pengelolaan limbah cair di Rumah Sakit X. Pengumpulan data dilakukan dengan cara observasi dan wawancara tidak terstruktur dengan menggunakan kuesioner kepada petugas yang bertanggung jawab terhadap pengelolaan limbah cair di Rumah Sakit X. Pengolahan limbah cair di Rumah Sakit X menggunakan sistem extended aeration. Hasil kualitas limbah cair terolah yang sudah memenuhi baku mutu limbah rumah sakit (berada di bawah baku mutu) yang ditetapkan Pemerintah adalah pH (keasaman), Biochemical Oxygen Demand, Chemical Oxygen Demand, Total Suspendid Solid . Sedangkan kadar ammoniaknya masih berada di atas baku mutu. Hal ini disebabkan oleh pengelolaan lumpur yang belum memadai. Disarankan sepuluh persen dari lumpur yang mengendap di bak clarifier dikembalikan ke bak aerasi. Sedangkan sisanya, yaitu 90% dari lumpur yang mengendap di bak clarifier dapat dilakukan pengolahan lumpur lebih lanjut.

Hospital Wastes Water Management in Jakarta February 2006. Hospital as a health facilities, serve ambulatory and hospitalized unhealthy community. Hospital operation and services could give negatif impact in to the environment such as environmental water pollution by un fullfil of hospital wastes water standard of disposal. Objective of this research is to identify the output of hospital wastes water treatment, whether it?s fulfill in the government standard. Data have been collected using observation and discusstion methode throught the personnel in charge for the hospital wastes water treatment prosess. Extended aeration process is used in orther to treat hospital wastes water. Most of the hospital effluent parameter standar have been fulfill in by the process applied (pH, BOD, COD, TSS), except for the amonia (NH4) parameter is still obove the standard. This is the lack in sludge management process. Sluged management process (digester) should be improved in other to reduce amonia in the effluent up to the standard have been set up. Such as 10% of the sluged should be return in to the aeration process and the rest should be treated in sluged treatment process."
Depok: Universitas Indonesia, 2006
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Dewi Nurdati
"Rumah sakit merupakan salah satu sumber air buangan yang patut mendapat perhatian. Rumah sakit adalah suatu lingkungan yang merupakan sistim yang sangat komplek. Di dalam lingkungan rumah sakit yang semakin berkembang ternyata terdapat banyak permasalahan kesehatan lingkungan, apabila sejak sekarang tidak mulai dipikirkan aspek penyehatan lingkungannya.
Sanitasi rumah sakit memberikan perhatian pada hubungan antara kesehatan manusia dengan lingkungan rumah sakit. Salah satu dari sanitasi rumah sakit yang perlu mendapat perhatian adalah pembuangan limbah rumah sakit.
Limbah rumah sakit ada 2 macam, toksik dan non toksik. Limbah rumah sakit, khususnya limbah yang bersifat infectious dan toksik apabila tidak dikelola dengan baik akan memperbesar bahaya kesehatan bagi manusia dan lingkungan sekitarnya.
Sistim saluran pembuangan buangan cair dari rumah sakit PGI CIKINI ada 2 macam, yaitu semua kotoran cair ditampung dalam septic tank, sedang air kotor masuk ke saluran terbuka tanpa pengolahan terlebih dahulu dibuang ke badan air, hal ini jelas merupakan sumber pencemaran lingkungan.
Penelitian ini merupakan survey analitik, pengamatan cross sectional dengan pengambilan data primer. Data diambil dari pengambilan sampel air di 3 titik lokasi, yaitu bagian hulu outlet limbah, limbah rumah sakit, bagian hilir outlet limbah di badan air. Dalam penelitian ini digunakan analisa data dengan uji statistik ANOVA TWO WAY.
Dari hasil penelitian ini dapat ditarik kesimpulan bahwa dari parameter kualitas fisik, kimia, biologi badan air dan limbah yang diteliti, ada yang dapat dijadikan indikator determinant pencemaran limbah rumah sakit, yaitu: POD, COD. Ammonia, Chlorida, TSS, Kekeruhan, Coliform, dan Fecal Coliform. Dan dari hasil penelitian ini ternyata dapat diketahui bahwa badan air penerima bagian hulu, sebelum terkena limbah rumah sakit, kualitasnya sudah menurun, tidak sesuai lagi dengan baku mutu yang berlaku, yaitu baku mutu badan air golongan D.
Pada pengujian hipotesis, ternyata terbukti bahwa parameter tersebut, kadar dari effluen lebih besar dari pada kadar di badan .air, sehingga akan menambah beban pencemaran pada badan air penerima yang memang kualitasnya sudah menurun.
Hasil yang didapat ini hanya berlaku untuk rumah sakit PGI CIKINI, tidak bisa diberlakukan untuk rumah sakit lain yang berbeda kelas., aktifitas dan golongan badan air penerimanya.
"
1990
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naniek Setiadi Radjab
"ABSTRAK
Peningkatan kebutuhan akan obat di Indonesia telah menyebabkan peningkatan jumlah dan kegiatan industri farmasi. Sampai dengan tahun 1992, tercatat di Departemen Kesehatan sebanyak 257 buah industri farmasi.
Kegiatan utama industri farmasi adalah mengolah bahan baku menjadi produk berupa obat atau bahan baku obat, namun akibat pengolahan ini terbentuk pula limbah. Adanya limbah industri farmasi, terutama limbah cairya akan berkaitan erat dengan masalah pencemaran lingkungan; khususnya pencemaran badan air yang disebabkan oleh limbah cair yang dibuang tanpa proses pengolahan terlebih dahulu. Upaya pengendalian pencemaran lingkungan dilakukan antara lain dengan penerapan Baku Mutu Lingkungan. Salah satu Baku Mutu Lingkungan ini tertuangdalam Surat Keputusan Menteri KLH No. 03/MenKLH/II/1991 tentang BAKU MUTU LIMBAH CAIR BAGI KEGIATAN YANG SUDAH BEROPERASI, yang menetapkan Baku Mutu Limbah Cair bagi 14 jenis industri. Jumlah parameter untuk pemeriksaan limbah cair bagi setiap industri dalam Surat Keputusan ini berkisar antara 3 sampai 8 parameter.
Masalah yang dihadapi sehubungan dengan Baku Mutu Lingkungan adalah bahwa industri farmasi belum termasuk dalam 14 industri yang tercantum dalam Surat Keputusan Menteri KLH No. 03/MenKLH/II/I991 tersebut, sehingga untuk pemeriksaan limbah cairnya secara rutin, jumlah parameter yang diperiksa cukup besar; hal ini akan menghasilkan informasi kompleks.
Masalah pertama adalah berkaitan dengan penetapan peringkat mutu limbah. Mutu limbah cair industri ditetapkan dengan membandingkan nilai parameter hasil pengujian limbah cair industri terhadap nilai Baku Mutu Limbah Cair. Bila seluruh nilai hasil pengujian berada di bawah nilai Baku Mutu, maka limbah tersebut termasuk "bersih" (baik), sebaliknya apabila seluruh nilai parameter berada di atas nilai Baku Mutu, maka limbah tersebut termasuk "pencemar" (buruk). Dengan banyaknya parameter yang perlu diuji, maka tak mudah untuk menentukan peringkat mutu limbah cair apabila dari hasil pengujian tersebut sebagian parameter melampaui nilai Baku Mutu, sebagian lagi tidak melampaui. Kesulitan dapat diatasi apabila hasil pengujian limbah cair dapat dinyatakan dalam suatu nilai tunggal berupa INDEKS yang dapat mewakili informasi kompleks hasil pengujian tersebut.
Masalah kedua adalah: besarnya jumlah parameter yang perlu diperiksa, khususnya untuk pemantauan rutin limbah cair industri, selain menghasilkan informasi kompleks, juga membutuhkan fasilitas lebih lengkap, waktu lebih lama dan biaya lebih besar, yang pada akhirnya akan menurunkan motivasi industri untuk memeriksa atau memeriksakan limbahnya. Apabila jumlah parameter dapat disederhanakan, maka masalah ini dapat diatasi, dan akan dapat meningkatkan motivasi industri dalam melakukan pemantauan limbah cairnya.
Penelitian ini bertujuan untuk memperoleh penyederhanaan informasi dalam memberikan gambaran kondisi limbah cair Industri; khususnya mendapatkan Indeks Pencemaran dan Parameter Nyata industri farmasi. Indeks Pencemaran merupakan nilai tunggal yang mewakili makna nilai parameter hasil pengujian limbah cair, sedangkan Parameter Nyata merupakan beberapa parameter tertentu yang nilai hasil pengujiannya cukup dapat menyatakan kondisi limbah cair industri.
Lokasi penelitian dipilih wilayah DKI Jakarta berdasarkan beberapa pertimbangan: (1) Dari 257 industri farmasi di Indonesia, 73 buah di antaranya berada di DKI Jakarta; (2) Mengacu pada satu Baku Mutu berdasarkan Surat Keputusan Gub. DKI No. 1608/1988; (3) Pengujian limbah cair dilakukan oleh satu laboratorium. Unit analisis adalah limbah cair efluen industri fannasi, dengan data berupa hasil pengujian limbah cair industri terhadap 23 parameter yang terdiri dari 3 data primer dan 115 data sekunder tahun 1990, 1991 clan 1992, berasal dari 28 sampel industri famnasi.
Analisis dilakukan dengan menggunakan Analisis Komponen Utama (Principle Component Analysis). Analisis Komponen Utama (AKU) adalah metode Multi Axis Ordination, yang termasuk dalam kelompok MDSA (Multivariate Descriptive Statistical Analysis), digunakan untuk menganalisis dan menyimpulkan suatu data matriks yang besar. Untuk pengolahannya digunakan perangkat lunak SAS dan SPSS.
Dad Analisis Komponen Utama ini diperoleh (1) Final Communality yang merupakan nilai yang menyatakan besamya informasi tiap parameter terhadap fenomena yang diamati; (2) Plot Ordinasi Variabel terhadap Komponen Utama yang menunjukkan pengelompokan karakteristik parameter terhadap fenomena. Nilai Final Communality merupakan dasar penetapan Nilai Robot Parameter sehingga telah dapat ditetapkan Nilai Robot dari 23 parameter limbah cair efluen industri farmasi. Nilai Bobot ini menunjukkan besarnya proporsi keterlibatan parameter pada mutu limbah cair.
Indeks Pencemaran (IP) diperoleh dengan memasukkan faktor Nilai Bobot, Nilai Parameter basil pengujian limbah cair dan Nilai Baku Mutu tiap parameter dalam rumus:
(V1 X B1) + (V2 X B2) +
(Vn X Bn)
IP= (BM1 X B1)+(BM2 X B2) +....(BMn X Bn)
IP = Indeks Pencemaran
V = Nilai parameter i
Bi = Nilai Bobot parameter i
BMi Nilai Baku Mutu untuk Parameter i
Indeks Pencemaran dapat digunakan sebagai tolok ukur dalam menetapkan peringkat kualitas limbah cair, dan merupakan indeks dengan skala "naik", artinya semakin besar nilai indeks semakin "buruk" kualitas limbah; dengan Nilai Ambang Batas pada nilai indeks = 1,00.
Nilai Indeks Pencemaran (dihitung dari 23 parameter) 118 contoh limbah cair efluen industri farmasi menunjukkan bahwa 59,32% dari limbah cair efluen industri farmasi dalam penelitian ini memberikan nilai IP < 1,00.
Parameter Nyata limbah cair industri farmasi telah diperoleh berdasarkan urutan besarnya Nilai Bobot parameter dan karakteristik pengelompokan parameter dalam Plot Ordinasi Variabel terhadap Komponen Utama. Lima Parameter Nyata tersebut adalah BOD, Kekeruhan, Fosfat, Warna dan Amoniak.
Nilai Indeks Pencemaran berdasarkan 23 parameter dengan nilai Indeks Pencemaran berdasarkan 5 parameter (Parameter Nyata) memperlihatkan hubungan yang kuat dengan nilai korelasi = 0,93411, sehingga 5 Parameter Nyata dapat digunakan dalam pemantauan kualitas limbah cair industri farmasi.
Parameter Nyata limbah cair industri farmasi diharapkan dapat merupakan masukan dalam penetapan Baku Mutu Limbah Cair untuk Industri Farmasi sebagaimana telah ditetapkan bagi 14 Industri lain dalam Surat Keputusan Menteri KLH No. 03/MenKLH/II/1991. Diharapkan pula bahwa Indeks Pencemaran dan Parameter Nyata ini dapat dikembangkan untuk jenis-jenis industri lain.

ABSTRACT
The increasing demand of medicines in Indonesia, have increased the number and the activities of pharmaceutical industries. Up to 1992 there were 257 registered pharmaceutical industries at the Department of Health. The main activity of pharmaceutical industry is manufacturing raw materials to produce medicines or other materials. But as the consequence of the main process, they also generate waste. Pharmaceutical waste, especially their liquid waste, will closely interrelate to the pollution; particularly water pollution caused by there untreated discarded waste.
One of the efforts to control the pollution is by applying Environmental Standard; which one is the Decree of Minister of Population and Environment No. 03/MenKLH/II/1991 about Effluent Standard for Existing Industries, which establishes Waste Water Effluent Standard for 14 kinds of industries. According to the Decree, there are only three to eight parameters that should be analyzed.
The problem according to the Effluent Standard is that pharmaceutical industries haven't been included into the 14 industries in the Decree of Minister of Population and Environment No. 03/MenKLH/II/1991, so that a great number of parameters should be involved in their liquid waste analysis; which provides complex information.
The first problem is related to the establishment of the level of wastewater quality. The industrial wastewater quality is determined by comparing the value of the parameters resulted by their liquids waste analysis to the value of the Waste Water Effluent Standard. If all of the parameters are under the threshold value, then the liquid waste will be dean (good); and if all of them are higher than the threshold value, then it will be polluter (bad). It is difficult to establish the level of the liquid waste quality - especially using such great number of parameters - if some of the parameters are higher and some are less than the threshold value. It is also not easy comparing the liquid waste quality of one industry to another, or comparing the liquid waste of the same industry in the different time. Such problems could be overcame if there is a single value system that represents the information of the value of all the parameters. The single value system is INDICES system.
The second problem is according to the great number of parameters should be involved. Besides providing complex information, it also takes much time, needs more complete facilities, more cost and at least could decrease the motivation of the industries to examine their liquid waste. If the number of parameters could be simplified, then such problem would be overcame.
The objective of this study is to find a simple useful information system to determine the condition of pharmaceutical effluent liquid waste; mainly to find the Pollution Indices and the Parameters of Significance of pharmaceutical industry. Pollution Index is a single value that represents the values of parameters produced by industrial liquid waste analysis; while Parameters of Significance is special parameters that are important to be detected to describe the condition of industrial waste water.
The area of the study covered DKI Jakarta according to considerations that 73 of 257 pharmaceutical industries were located in DKI Jakarta; it referred to the same Effluent Standard based on the Decree of the Governor of DKI No. 1608/1988; and the liquid waste analysis were done by one laboratory. The unit of analysis was pharmaceutical effluent liquid waste. The data covered 3 primary data and 115 secondary data during 1990, 1991 and 1992, which came from the 28 samples of pharmaceutical industries.
Data analysis were done by using Principle Component Analysis, a Multi Axis Ordination method included in Multivariate Descriptive Statistical Analysis, which is used to analyze and to obtain the summary of a large amount of data. SAS and SPSS were soft wearing used for data processing based on the objective wanted to be achieved.
Principle Component Analysis generates: (1) Final Communality, which provides the magnitude of information of each parameter upon the studied phenomena. (2) Plot Ordination of Parameters to the Principle Component that pictured the clustered parameters specified to the studied phenomena.
Weight Value of 23o£ the wastewater parameters were determined based on their Final Communality. The Weight Value indicates the proportion of involvement of the parameters to the wastewater quality. Pollution Indices were determined by transforming such factors: Weight Value; the value of each parameter according to the waste water analysis, and the value of each parameters in the Effluent Standard; to the formulae:
(V1 X B1) + (V2 X B2) +
(Vn X Bn)
IP= (BM1 X B1)+(BM2 X B2) +....(BMn X Bn)
IP = Pollution Indices
Vi = Value of parameter i
Bi = Weight Vale of parameter i
BMi= Value of Parameter i in the Effluent Standard
Pollution Indices, which is used to establish the level of pharmaceutical liquid waste quality, is an increase index. It means that the greater is the value of the index; the worst is the liquid waste quality.
Pollution Indices of 118 samples of pharmaceutical effluent liquid waste which were computed to the 23 parameters showed that 59.32% of pharmaceutical effluent liquid waste in this research presented Pollution Indices Value < 1.00.
Parameters of Significance of pharmaceutical wastewater had been found based on the sequence of the Weight Value of parameters and their specified duster in the Plot Ordination of variable toward the Principle Component. The five of Parameters of Significance found were: BOD, Turbidity, Phosphate, Color and Ammonia.
There were high correlation Cr = 0.93411) between Pollution Indices value based on the 23 parameters and Pollution Indices value based on 5 Parameters of Significance; so that the Parameters of Significance which represented 23 parameters could be used for pharmaceutical effluent liquid waste monitoring.
Parameters of Significance of pharmaceutical waste water was expected to be an input for pharmaceutical waste water Effluent Standard in the same manner as established for 14 Industries in the Decree of Minister of Population and Environment.
There is a hope that Pollution Indices and Parameters of Significance system would be developed for other kind of industries.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 1994
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hetty Adriasih
"Tujuan penelitian ini adalah menguji hipotesa dan dari basil pengujian tersebut dapat digunakan untuk memprediksi upaya-upaya spa yang harms dilakukan pemerintah DKI Jakarta bersama instansi terkait dalam menanggulangi agar jumlah penderita sakit akibat pencemaran air tersebut tidak meningkat. Melalui program dan kegiatan-kegiatan tersebut diharapkan terwujud masyarakat yang sehat, tinggal pada pemukirnan yang layak huni dalam lingkungan yang bersih ,serasi dan teratur.
Dari hasil dan pembahasan melalui analisis cluster dan regresi diperoleh kesimpulan bahwa memang kepadatan penduduk berpengaruh terhadap rasio penderita sakit akibat pencemaran air, hal ini dapat dilihat dari basil regresi pada Model VI dimana rasio penderita sakit akibat pencemaran air yang dapat dijelaskan oleh kepadatan penduduk adalah sebesar 77,5 % dan sisanya sebesar 22,5 % dijelaskan oleh sebab lainnya.
Kondisi ini terjadi pada 5 ( lima ) kecamatan yaitu kecamatan Palmerah, Taman Sari, Jatinegara, Matraman dan Tebet yang merupakan wilayah prioritas penanggulangan meningkatnya penderita sakit akibat pencemaran air. Sesuai hipotesa bahwa kepadatan penduduk yang tinggi berpotensi terdapatnya pencemaran air karena daya dukung lahan yang terbatas, sehingga jarak rumah satu dengan lainnya berdekatan. Apabila ditambah dengan prasarana air bersih dan sanitasi wilayah tersebut yang kurang baik maka perlu pula dipertimbangkan pengaruh rasio pemakai sumber air non PAM dan perilaku masyarakat terhadap kebersihan terhadap wilayah itu.
Maka saran yang dapat disampaikan adalah bahwa masalah pencemaran air tidak terlepas dari penyediaan air bersih dan kondisi sanitasi yang ada di wilayah DKI Jakarta. Hal ini perlu penanganan yang lebih serius dengan melibatkan pemerintah pusat, organisasi profesi, LSM, swasta dan segenap lapisan masyarakat. Secara ideal masyarakat mengkonsumsi air yang memenuhi persyaratan kesehatan melalui sistim penyediaan air bersih dari PDAM namun sampai saat ini rata-rata cakupan pelayanannya bare 20-30% penduduk perkotaan. Melihat adanya kendala-kendala yang dihadapi PDAM dalam memperluas jaringan distribusi pelayanannya ( biaya investasi yang besar ) maka upaya lain yang dapat dilakukan oleh Pemerintah DKI Jakarta dalam menanggulangi peningkatan penderita sakit akibat pencemaran air adalah perlu terlebih dahulu mengikut-sertakan masyarakat ( pelibatan masyarakat ) mulai dari merencanakan, melaksanakan, mengawasi serta mengevaluasi program dan kegiatan-kegiatan dalam rangka menjaga kelestarian lingkungannya agar hidup bersih dan sehat sehingga pencemaran dapat dikurangi. Perencanaan kegiatan-kegiatan dengan tujuan untuk meningkatkan kesadaran masyarakat terhadap kelestarian air dan lingkungan hidup serta hidup sehat dan teratur disajikan dalam bentuk contoh Logical Framework Matrix.
"
Depok: Universitas Indonesia, 2001
T177
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahayu Handayani
"Peraturan Gubernur Provinsi DKI Jakarta Nomor. 122 Tahun 2005 tentang Pengolahan Air Limbah Domestik memiliki batasan konsentrasi amonia pada air buangan sebesar 10 mg/l. Namun, beberapa instalasi pengolahan limbah cari (IPLC) belum mampu mencapai angka tersebut karena nitrifikasi terhambat jika konsentrasi oksigen terlarut tidak mencukupi. Tujuan dari penelitian ini adalah mengevaluasi kinerja IPLC terkait masalah amonia pada efluen yang masih melebihi baku mutu dengan mengoptimalisi konsentrasi oksigen pada unit aerasi hingga 2- 4 mg/l melalui reaktor aerasi skala laboratorium. Hasil dari evaluasi IPLC adalah beban hidrolis masih memenuhi desain awal sebesar 10,7 m3/ hari, sedangkan beban organik yang masuk ke IPLC adalah 34 g/m3/hari. Hasil penelitian dengan reaktor aerasi skala laboratorium menunjukkan optimasi dengan meningkatkan konsentrasi oksigen terlarut mampu menurunkan amonia pada hari ke-0 sebesar 77,4 mg/l dengan efisiensi penurunan hingga 70%, dengan hasil pada hari ke-14 mencapai 21,4 mg/l. Agar amonia pada efluen memenuhi baku mutu, optimasi menggunakan pengolahan tambahan seperti unit klorinasi atau penambahan unit ion exchange, dapat dijadikan sebagai salah satu pilihan pengolahan.

Regulation of DKI Jakarta Province Government No. 122 in 2005, concerning treatment of domestic wastewater, has an ammonia discharge limit of 10 mg/l. However, some sewage treatment plants (STP) do not meet this regulation yet, since nitrification process is inhibited when the presence of dissolved oxygen (DO) is in inadequate amount. The purpose of this study is to evaluate the performance of STP in case of the ammonia concentration still higher than the discharge limit and to optimize the DO concentration in aeration tank about 2 to 4 mg/l through a laboratory scale reactor. The evaluation result indicates that hydraulic loading is about 10,7 m3/day which still meets the design criteria, while the organic loading is about 34 g/m3/day. On the other hand, the result from labscale aeration reactor shows the reduction of ammonia from day-0 (77,4 mg/l) up to day-14 (21,4 mg/l) with the efficiency of ammonia removal of 70%. In order for the discharge of ammonia to meet the discharge limit, optimization through additional treatments such as chlorination unit or ion exchange unit can be one of wastewater treatment alternative."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42617
UI - Skripsi Open  Universitas Indonesia Library
cover
Sunarsih
"Kebijaksanaan di bidang energi merupakan bagian integral dari kebijaksanaan nasional yang secara menyeluruh berkaitan erat dengan pertumbuhan ekonomi, pertambahan penduduk dan penyediaan energi. Sejalan dengan pertumbuhan ekonomi, kebutuhan listrik terus meningkat dari tahun ke tahun. Khususnya untuk sistem kelistrikan Jawa-Bali konsumsinya 80% dari konsumsi listrik seluruh Indonesia. Hal tersebut sesuai dengan skenario tingginya pertumbuhan kebutuhan listrik rata-rata dalam Repelita V menjadi 15,5% per tahun, kemudian meningkat lagi menjadi 17,7% per tahun pada Repelita VI dan kemudian baru menurun sampai 14,1% pada Repelita VU. Dalam rangka untuk memenuhi laju pertumbuhan permintaan akan listrik dan meningkatkan pelayanan kepada masyarakat, pemerintah Republik Indonesia membangun beberapa Pembangkit Listrik Tenaga Uap (PLTU), salah satu diantaranya adalah PLTU Tambak Lorok Semarang. PLTU Tambak Lorok adalah suatu pusat pembangkit tenaga listrik dengan kapasitas terpasang 300 MW yang menggunakan uap sebagai penggerak utama turbin guna menghasilkan tenaga listrik. Sistem ini bekerja dengan menggunakan air laut sebagai cairan kerja. Air laut diubah menjadi uap di boiler (ketel uap) dan keluar dari turbin, kemudian uap dimasukkan ke kondensor (mesin pengembun) dengan pendingin berasal dari air laut sehingga mencair kembali. Buangan air pendingin berupa air panas ini dikeluarkan melalui outlet menuju kolam pelabuhan Tanjung Emas. Buangan air ini disebut "limbah air panas" yang akan menyebabkan terjadinya perubahan suhu pada suatu perairan. Dalam penelitian ini masalah ditekankan pada simulasi model dinamika sistem pencemaran limbah air panas terhadap sifat fisikkimia air dan biota perairan di saluran pembuangan (outlet). Apabila limbah air panas tersebut dibuang ke dalam suatu perairan yang berlebihan hingga melampaui kemampuan dayadukung lingkungan perairan itu, maka limbah air panas akan berbahaya bagi lingkungan perairan. Hal ini akan berdampak pada menurunnya kualitas perairan terhadap sifat fisik-kimia air dan indeks keanekaragaman biota perairan (plankton). Penelitian ini bertujuan untuk memperoleh gambaran atau merumuskan model pengaruh limbah air panas terhadap sifat fisikkimia air dan biota perairan secara sederhana. Untuk selanjutnya, penelitian ini dapat digunakan untuk memberikan masukan kebijaksanaan pengelolaan yang baik terhadap pusat Pembangkit Listrik Tenaga Uap (PLTU), sehingga akibat sampingannya dapat ditekan serendah-rendahnya. Hubungan antara setiap faktor yang saling berinteraksi dan saling mempengaruhi untuk setiap faktor yang berpengaruh adalah berbeda. Hal ini menunjukkan kompleksitas model pencemaran limbah air panas. Untuk mengetahui besarnya pengaruh setiap faktor dan bentuk hubungan antar faktor dengan simulasi model dipilih pendekatan dengan metode analisis dinamika sistem yang menggunakan program "Powersim Version 2.01" copyright tahun 1993-1995 ModellData AS. Untuk uji validasi model digunakan analisis satuan, simulasi model dalam bentuk grafik dan tabel serta verifkasi. Simulasi model terhadap parameter BOD dan COD sebagai nilai awal digunakan nilai baku mutu menurut Kepmen KLH No. Kep.O2/Men.KLH/1/1988 tentang Pencemaran Air Laut Untuk Budidaya Perikanan. Verifikasi model dilakukan dengan melakukan pengukuran di lapangan sebanyak 2 (dua) kali sampling pada 6 stasiun pengamatan di perairan kolam pelabuhan Tanjung Emas. Selain itu untuk keperluan verifikasi juga digunakan data hasil survai hidro-oceanologi Tambak Lorok (1993), studi ANDAL PLTU Tambak Lorok Blok II (1995) dan hasil pemantauan (1995-1996). Untuk melihat gambaran sebab-akibat antar faktor tersebut dilakukan dengan mengembangkan sub-sistem model dan membangunnya dari sub-sistem-sub-sistem model tersebut sehingga menjadi sistem yang besar. Dengan melalui asumsi-asumsi yang diambil dari beberapa simulasi, maka simulasi model dapat mendukung konsep siklus pencemaran limbah air panas yang berpengaruh terhadap berbagai faktor yang membentuk suatu sistem pencemaran. Hasil analisis menunjukkan bahwa limbah air panas yang dibuang ke perairan dapat merubah kondisi perairan yang berakibat naiknya suhu lebih tinggi dari suhu ambien level-nya (30°C ) dengan Δt sebesar 7°C. Naiknya suhu perairan berpengaruh terhadap kelarutan oksigen dalam air. Semakin tinggi suhu air, maka kelarutan oksigen makin rendah sehingga kandungan oksigen terlarut akan kecil. Dalam simulasi model dinamika sistem yang dihasilkan berdasarkan waktu, pada suhu di pelimbahan (outlet) sama dengan 37°C dan oksigen terlarut (DO) sama dengan 7 mg/l, maka indeks keanekaragaman yang diperoleh dari simulasi sebesar 2,63. Hal ini menunjukkan kondisi perairan yang tercemar dengan tingkat pencemaran sedang. Kenaikan suhu di perairan menyebabkan oksigen terlarut menurun, kebutuhan oksigen bialogi (BOD) meningkat dan kebutuhan oksigen kimia (COD) meningkat. Dalam simulasi model dinamika sistem terhadap waktu menunjukkan bahwa indeks keanekaragaman yang dipengaruhi oleh aliran informasi dari DO, BOD dan COD serta adanya proses pendinginan adalah sangat kecil, mendekati nilai 0 (nol). Hal ini menunjukkan bahwa biota air yang berada di pelimbahan (outlet) mati semua, walaupun pada waktu dilakukan sampling masih dapat tertangkap beberapa jenis plankton. Mengingat bahwa plankton bersifat melayang-layang, maka tertangkapnya jenis ini diduga karena mendapat limpahan dari saluran pembuangan. Dengan adanya peningkatan suhu di perairan kolam Pelabuhan Tanjung Emas sebagai akibat limbah air panas PLTU diduga merupakan penyebab utama terjadinya penurunan jumlah dan jenis plankton di perairan tersebut. Indeks keanekaragaman terukur di pelimbahan (outlet) sebesar 1,43 dan 1,44. Ada dua jenis plankton yang dapat ditemukan di semua stasiun pengamatan yaitu Skeletonema dan Nitzchia yang mampu bertahan hidup pada suhu yang 37°C. Dalam simulasi model sistem dinamika menunjukkan bahwa adanya pengaruh suhu terhadap DO, BCD, COD, CL2, C02, nitrogen dan pH akan memperbaiki kondisi perairan dengan indeks keanekaragaman sama dengan 1,57 dan akan menurun sesuai dengan keadaan suhu terhadap waktu. Dengan meningkatkan kapasitas terpasang menjadi 500 MW menyebabkan debit air panas menjadi 250%, yang dapat mempercepat panasnya perairan, sehingga perairan menjadi cepat panas. Kenaikan panas ini akan menaikkan suhu dengan Δt 2°C, sehingga suhu menjadi 39°C. Kondisi ini menyebabkan menurunnya nilai indeks keanekaragaman. Meningkatnya kalor panas limbah air panas tersebut dapat menyebabkan terjadi resirkulasi panas ke intake. Dari simulasi model dinamika sistem menunjukkan bahwa peningkatan panas dari limbah air panas lebih cepat dari sebelumnya kapasitas terpasang ditingkatkan. Sedangkan aliran air panas menunjukkan kestabilan atau adanya "goal seeking" dalam waktu yang relatif lama. Untuk menjaga kondisi perairan yang baik, maka kebijaksanaan yang diambil adalah dengan memutuskan aliran limbah air panas (aliran materi) dalam model yang berarti limbah air panas tidak dibuang di pelimbahan (outlet) seperti keadaan pada saat sekarang ini. Karena dengan memutus aliran ini berarti memindahkan tempat pelimbahan (outlet) atau saluran pembuangan. Bahkan menurut hasil studi yang pernah dilakukan oleh PLN bekerja sama dengan UGM, menyarankan agar tidak ada resirkulasi ke intake safuran pembuangan air panas dipindahkan di sebelah timur kolam pelabuhan. Dari segi lingkungan hidup hal ini sangat menguntungkan, karena limbah air panas segera mengalami pengenceran oleh atmosir, sehingga nilai indeks keanekaragaman menunjukkan keadaan perairan yang tidak tercemar.
The policies in the energy sector are an integral parts of national policies as a whole, and are closely related to the growth of the economy and population and the supply of energy. The growth of economic, the demand for electricity continuously grows from year to year, especially in Java and Bali areas which consumes 80% of Indonesian electricity. The growth is in accordance to the forecast of electricity growth in the average of 15.5% per year during the fifth Repelita (National five year development planning) and the increase to 17.7% during the sixth Repelita before it decreases to 14.1% in the seventh Repelita. To fulfill the growing demand for electricity and to improve the service to users, the government of Indonesia had build several steam generated electrical power plant (PLTU), one of which is PLTU Tambak Lorok Semarang. PLTU Tambak Lorok is a power plant which uses steam as the main force to move the turbine to create electricity. This system is functioning by using sea water as the working liquid. The sea water is turned into steam in the boiler and out from turbine, the steam then being put in to a condenser with the chillier from sea water and to turn its thermal water discharged effluent back to sea water. The residual chillier which is now become hot water is discarded using an outlet to Tanjung Emas harbor pond. The discarded water is called "thermal effluent" and it will cause changes in sea temperature in the surrounding areas. In this research, the problem is emphasized on simulation of the dynamic model of thermal effluent system on the physical and chemical characteristics of sea water and aquatic biota in the waste outlet. If the water effluent is discarded excessively so that it exceeds the tolerance of surrounding sea water body, the waste will poisonous. This brings the declines in quality of the water in teems of the physical-chemical characteristics of water, and diversity index of aquatic biota (plankton). This research intents to capture the idea or to formulate the model of water effluent effect on the physical-chemical characteristic of the water and aquatic biota in a simple way. Furthermore, this research can be used as an inputs for the policy of good management to the Steam Power Plant, so that its environmental impact can be minimized. The relationship among each interacting and affecting factor behaves differently. This shows the complexity of the water effluent model. To know the immensity of the effects of each factor and relationship with the simulation of the model, one chooses an approach with the analytical method of system dynamic which uses the program "Powersim version 2.01" copyright 1993-1995 by ModellData, U.S.A. To validate the model, one uses unit analysis, model simulation in graphics and tables and verifications. in the model simulation on parameters BOD and COD, as the starting value one choose the standard quality value according to Kepmen KLH No. Kep.02/Men.KLH/1/1988 about the sea pollution for fishery. Model verification is done by measuring on the field with 2 samplings at 6 stations in the water at harbor Tanjung Emas. For observations, one also uses data from hydro-oceanology survey Tambak Lorok (1993), ANDAL study PLTU Tambak Lorok Blok II (1995) and observation result (1995-1996). Figuring the causal relationship among those factors is carried out by developing a subsystem model and build it from the model's sub-systems to make a big system. From the assumptions taken from several simulations, the model can support the concept of water effluent pollution cycle which affects various factors forming some kind of pollution system. Analysis results show that water effluent discarded into the water can change the water condition which make the temperature rises higher than the ambient level (30°C) with Δt as much as 7°C. The water temperature increase affects the oxygen solvability. The higher the temperature, the oxygen solvability is lower, so that the oxygen in the water is little. In the system dynamics model simulation produced with repeat to time, at waste temperature equal to 37°C and solved oxygen (DO) equal to 7 mg/l, the diversity index acquired from the simulation is 2.63. It shows the polluted water condition at the middle level. The increase of water temperature cause solved oxygen to decrease, biology oxygen demanded (BOD) increase, and chemical oxygen demanded (COD) to increase. The system dynamics model simulation with respect to time shows that diversity index affected by information flow from DO, BOD, and COD with the existence of the cooling system is very small, close to 0 (zero). This shows that the water biota which were in the outlet all died, although when sampled several kinds of plankton were still found. Recalling that plankton's float, the capture of these plankton's may originate from the outlet. With the increase of increase of temperature in the pond of Tanjung Emas Harbor because of water effluent, PLTU was thought the main culprit of the decrease of numbers and kinds of planks in the water. The diversity index measured in the outlet are 1.43 and 1.44. There were two kinds of plankton found in all the observation stations, namely Skeletonema and Nifzchia which survive at 37°C. The dynamics system model simulation showed that the temperature effect on DO, BOD, COD, C12, C02, nitrogen and pH will remedy the water condition with diversity index equal to 1.57, and will decrease according to the temperature condition with respect to time. Increasing the installed capacity to 500 MW causes the water effluent debit to increase 250%, which accelerate the increase of water temperature. This increases temperature by 2°C, so the temperature will be 39°C. This condition causes a re-circulation to the intake. The system dynamics simulation model shows that the heat increase from the water effluent was faster than before the installed capacity had been increased. In the mean time, the hot water flow shows the stability or there was "goal seeking° for a relatively long time. To maintain a good water condition, the policy taken is by disconnecting the heat flow (material flow) in the model, which means the water effluent is not discarded in the outlet as the current situation. The flow disconnection means moving the outlet or the waste channel. Even, according to the result of study conducted together by PLN and AGM, to stop the re-circulation to the intake, the water effluent channel to be moved to east of the harbor pond. From the natural environment, this is very beneficial because the water effluent will immediately be thinned out by the atmosphere, so that the value of diversity index shows an unpolluted water situation."
Jakarta: Program Pascasarjana Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Artika Novrianti
"Air limbah domestik merupakan air buangan yang berasal dari dapur, toilet, wastafel dan sebagainya yang mengandung zat tertentu dan berbahaya bila dibuang begitu saja ke lingkungan tanpa diolah sebelumnya. Tujuan dari penelitian ini yakni untuk mengetahui efisiensi dari variasi diameter dan konfigurasi bioball sebagai media filter dalam metode biofilter anaerob-aerob dalam mengolah air limbah domestik yang berasal dari Perpustakaan UI. Proses penelitian ini meliputi seeding yaitu proses pembiakan bakteri Biotech (bakteri kultur anaerob-aerob berbentuk bubuk) sebagai starter untuk perkembangbiakan bakteri dalam air limbah Perpustakaan UI, dilanjutkan dengan proses aklimatisasi selama 29 hari dan proses feeding yang bertujuan untuk memodifikasi lingkungan bakteri dengan suplai nutrisi dan pada proses tersebut diamati efisiensi removal COD sampel air limbah selama 21 hari. Dengan variasi diameter dan konfigurasi dari kedua bioball menghasilkan efisiensi penurunan kadar pencemar organik yang berbeda dengan rata-rata efisiensi COD feeding sebesar 74% (reaktor 1 dengan ∅= 5 cm dan berbahan HDPE) dan 81% (reaktor 2 dengan ∅= 3,5 cm dan berbahan PVC) dengan pH optimum 7-7,5, suhu optimum 26-300C, kandungan VSS 10-98 mg/l, waktu tinggal 24 jam dengan rasio BOD (Biological Oxygen Demand) dan COD (Chemical Oxygen Demand) senilai 0,61.

Domestic wastewater is the waste water that comes from the kitchen, toilet, sink and so on that contain certain substances and dangerous when disposed into the environment without being processed first.The purpose of this study was to determine the efficiency of diameter and configuration variation bioball as filter media in anaerobic-aerobic biofilter method in treating domestic wastewater from the UI Library. The research process includes seeding is the process of breeding bacteria Biotech (anaerobic-aerobic bacteria cultures) as a starter for the proliferation of bacteria in wastewater UI Library, followed by a process of acclimatization for 29 days and the which aims to modify the environment of the bacteria with nutrients supplied and on the process observed COD removal efficiency of wastewater samples for 21 days. With variations in diameter and configuration of both bioball generating efficiency decreased levels of organic pollutants in contrast to the average efficiency of COD feeding by 74% (reactor 1 with ∅ = 5 cm and made from HDPE) and 81% (reactor 2 with ∅ = 3.5 cm and made from PVC) with the optimum pH 6.5-7.5, the optimum temperature of 25-300C, VSS content of 10-98 mg/l, 24-hour residence time ratio of BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand) worth 0.61."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46585
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silmina Sabila
"Transportasi laut kapal berpotensi memberikan bahaya pencemaran melalui kecelakaan kapal. Kargo curah kering berbahaya yang diangkut dapat secara langsung memberikan paparan terhadap lingkungan laut. Kargo curah kering seperti batu bara dan bijih besi merupakan contoh jenis kargo curah kering berbahaya. Namun, saat ini informasi mengenai bahaya pencemaran dari tumpahan kargo curah kering masih terbatas. Oleh karena itu penelitian ini bertujuan untuk menganalisis bahaya pencemaran dari tumpahan kargo curah kering akibat kecelakaan kapal X, menganalisis kebijakan penanggulangan, serta menyusun strategi keberlanjutan penanggulangan. Metode yang digunakan adalah mixed methods kuantifikasi risiko bahaya pencemaran, dampak sosial ekonomi, analisis komparatif kebijakan, serta analisis SWOT untuk penyusunan strategi. Hasil yang didapatkan yaitu tumpahan kargo curah kering kapal X termasuk kategori risiko rendah. Tumpahan berdampak terhadap kondisi lingkungan laut, dengan estimasi sebaran tumpahan 874,187km2. Tidak terdapat dampak sosial ekonomi terhadap masyarakat di sekitar lokasi. Terdapat legal gap atas kebijakan yang berlaku. Strategi yang dapat dilakukan adalah menyusun contingency plan nasional dan mengoptimalkan monitoring kecelakaan kapal.

Marine transportation has the potential to pose a pollution threat through ship accidents. Dangerous dry bulk cargoes carried may provide direct exposure to the marine environment. Dry bulk cargoes such as coal and iron ore are examples of dangerous dry bulk cargoes. However, current information regarding the dangers of pollution from spilled dry bulk cargo is still very limited. Therefore, this study aims to analyze the pollution hazard from spills of dry bulk cargo due to the X ship accident, analyze prevention policies, and develop strategies for sustainability of countermeasures. The method used is a mixed methods descriptive analysis of hazards, socio-economic impacts, policy comparative analysis, and SWOT analysis for strategy formulation. The results obtained are that the dry bulk cargo spill has an impact on marine environmental conditions, with an estimated spill distribution of 874,187km2. There is no socio-economic impact on the community around the location. There is a legal gap over the applicable policies. The strategy that can be implemented is to develop a national contingency plan and to optimize monitoring of ship accidents."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Diana Hendrawan
"DKI Jakarta dilintasi oleh 13 sungai besar dan beberapa sungai kecil serta 40 situ tersebar di 5 wilayah kota yang sangat potensial sebagai air permukaan untuk menunjang kehidupan manusia. Dengan pertumbuhan penduduk DKI yang pesat dan perkembangan pemanfaatannya, ada kecenderungan terjadinya perubahan pada kondisi dan kualitas air sungai dan situ di DKI Jakarta.
Kepadatan penduduk dapat mempengaruhi pencemaran lingkungan sungai dan situ. Hal ini dikaitkan dengan tingkat kesadaran penduduk dalam memelihara lingkungan yang sehat dan bersih. Pendugaan pencemaran perairan dapat dilakukan dengan melihat pengaruh polutan terhadap kehidupan organisme perairan dan lingkungannya. Unit penduga adanya pencemar tersebut diklasifikasikan dalam parameter fisika, kimia dan biologi. Dalam menetapkan kualitas air, parameter-parameter tersebut sebaiknya tidak berdiri sendiri tapi dapat ditrasformasikan dalam suatu nilai tunggal yang mewakili disebut sebagai Indeks Kualitas Air.
Hasil perhitungan terhadap nilai IKA menunjukkan bahwa 83 % sungai dan 79 % situ yang ada di DKI Jakarta ada dalam kategori buruk. Hal ini disebabkan tidak terpeliharanya sungai dan situ dengan baik, kurangnya kesadaran masyarakat dan pemerintah dalam upaya memelihara sungai dan situ.

Water Quality of Rivers and Ponds on DKI Jakarta. Thirteen big rivers, some small rivers, and 40 ponds spread over districts at Jakarta city are potential to support human being life. As the population is growing and the usage of stream water is increasing, the condition and quality of rivers and ponds are changing.
Crowd housing can affect rivers and ponds pollution, as the people awareness about clean and healthy environment is less. Stream water pollution assessment can be done by counting the effect of pollutant to life of stream water organisms. This assessment unit could be classified into physics, chemical, and biological parameter. To know the water quality, those parameters are transformed into one single value, that is Water Quality Index.
The calculation result of Water Quality Index value shows that 83 % of rivers and 79 % of ponds are bad. This condition is caused by less people and government awareness to maintain rivers and ponds."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Maulana Hardi
"Pada saat ini pembangunan di Indonesia mengalami kemajuan yang sangat pesat. Hai ini diiringi dengan semakin meningkatnya perkembangan dan kemajuan di bidang industri. Perkembangan dan kemajuan di bidang industri tersebut akan mempengaruhi limbah yang dihasilkan oleh industri, baik dari segi kuantitas maupun kualitas limbah. Limbah yang dihasilkan oleh industri tersebut akan mempunyai risiko sebagai penyebab pencemaran lingkungan, dan saat ini pencemaran lingkungan yang berakhir dengan kerusakan lingkungan menjadi suatu masalah utama dalam pembangunan, terutama bagi manusia. Limbah industri, khususnya limbah cair memberikan kontribusi yang cukup besar terhadap pencemaran air. Hal ini merupakan suatu kondisi yang memiliki risiko tinggi, karena pencemaran pada air dapat menjadi sumber utama terjadinya kontak manusia dengan senyawa kimia beracun. Hal ini harus menjadi perhatian semua pihak yang terkait, mengingat air adalah salah satu kebutuhan pokok manusia.
Dengan pesatnya perkembangan industri di Indonesia, akan mengakibatkan timbulnya masalah pencemaran yang semakin serius. Pencemaran tersebut tidak hanya merusak lingkungan, tetapi dapat berakibat fatal bagi mahluk hidup terutama pada manusia. Senyawa azo, adalah zat warna yang digunakan untuk pewarna tekstil yang dapat mencemari perairan. Zat warna dari limbah tekstil bila dibuang ke perairan dapat menutupi permukaan badan air sehingga menghalangi sinar matahari untuk masuk ke dalam perairan. Berkurangnya sinar matahari yang masuk ke perairan menyebabkan terhambatnya proses fotosintesis oleh tumbuhan yang ada diperairan. Hal ini akan menyebabkan kandungan oksigen di dalam air menurun dan pada akhimya menyebabkan kematian mahluk hidup yang ada di perairan tersebut. Selain itu, badan air yang tercemar oleh limbah tekstil juga sangat berbahaya bila digunakan oleh manusia untuk kebutuhan sehari-hari. Hal ini dikarenakan beberapa senyawa kimia dan limbah tekstil mempunyai sifat yang toksik bagi mahluk hidup yang dapat menyebabkan berbagai penyakit seperti kanker dan tidak berfungsinya organ-organ tubuh bahkan dapat menyebabkan kematian.
Di samping mempunyai sifat yang berbahaya bagi mahluk hidup terutama bagi manusia, pencemaran limbah tekstil juga dapat mengurangi nilai estetika badan air, badan air (sungai atau danau) menjadi tidak nyaman untuk dipandang karena aimya berwarna bahkan mungkin berwarna gelap atau hitam pekat. Nilai estetika suatu badan air juga menurun dengan timbulnya bau yang tidak sedap seperti bau amoniak dan asam sulfida hasil penguraian limbah oleh bakteri secara anaerob karena badan air mempunyai kandungan oksigen yang sangat minim. Penurunan atau hilangnya nilai estetika suatu badan air akan menurunkan nilai ekonomis badan air, dan tentunya akan merugikan bagi masyarakat yang tinggal disekitar badan air tersebut.
Senyawa-senyawa kimia yang umumnya ada di dalam air limbah industri tekstil adalah senyawa organik. Senyawa organik ini umumnya adalah senyawa azo yaitu zat warna yang digunakan pada pencelupan dan pewarnaan tekstil. Kadar senyawa organik yang ada dalam suatu perairan dapat diukur dengan parameter Chemical Oxygen Demand (COD) atau dengan parameter Biochemical Oxygen Demand (BOD). Sedangkan untuk melihat kepekatan wama maka dapat dilakukan pengukuran intensitas warna.
Saat ini sedang dikembangkan metode fotokimia yaitu suatu metode untuk menguraikan senyawa organik dengan menggunakan bantuan sinar ultra violet yang dipadukan dengan senyawa kimia Metode ini diharapkan mampu menguraikan secara efektif dan efisien (dari segi waktu, tenaga, dan biaya) berbagai senyawa organik (terutama senyawa organik yang berasal dari limbah tekstil seperti zat warna azo).
Tujuan Penelitian ini adalah:
1) Untuk mengetahui kemampuan maksimum pengolahan zat warna dan senyawa organik pada air limbah industri tekstil dengan metode Fotokimia UV-H202.
2) Untuk mengetahui kondisi optimum metode Fotokimia UV-F1202, yaitu besamya konsentrasi larutan H202 dan lamanya waktu penyinaran Ultra Violet yang diberikan untuk pengolahan zat wama dan senyawa organik pada air limbah industri tekstil.
Pengolahan air limbah dengan metode Fotokimia UV-H202 dapat menurunkan intensitas wama dan jumlah senyawa organik, dan semakin besar konsentrasi larutan H202 yang digunakan dan semakin lama waktu penyinaran sinar UV, semakin besar penurunan nilai intesitas warna, nilai COD dan BOD pads air limbah industri tekstil.
Pada penelitian ini, metode yang digunakan adalah Metode Eksperimental, yaitu dengan cara memvariasikan nilai variabel bebas untuk mencari variasi apa yang mempunyai kemampuan yang paling optimum.
Dalam penelitian ini yang merupakan variabel terikat (dependen) adalah kemampuan pengolahan limbah, yang didapat dan selisih Konsentrasi Zat Varna sebelum dan sesudah pengolahan limbah cair, sedangkan yang merupakan variabel bebas (Independen) adalah konsentrasi larutan H202 yang digunakan di dalam pengolahan dan lamanya waktu penyinaran ultra violet pada pengolahan air limbah.
Data hasil analisis yang didapat pada penelitian ini berupa nilai Intensitas warna dan konsentrasi senyawa organik yaitu nilai BOD dan COD dari sampel air sebelum dilakukan pengolahan dan pada sampel air yang telah dilakukan pengolahan dengan metode Fotokimia UV-H202.
Data yang diperoleh dari hasil pengukuran parameter-parameter yang telah disebutkan pada bagian terdahulu disajikan dalam bentuk tabel dan grafik serta dianalisis secara deskriptif dan hubungan beberapa parameter menggunakan uji statistik sederhana untuk menentukan korelasi antara variasi konsentrasi larutan H202 dan variasi lama waktu penyinaran dengan data parameter kadar zat warna, BOD dan COD.
Berdasarkan hasil penelitian yang telah dilakukan, maka dapat membuktikan bahwa hipotesis penelitian yaitu: Pengolahan air limbah dengan metode Fotokimia UV-H202 dapat menurunkan intensitas warna dan senyawa organik pada air limbah industri tekstil, dapat diterima. Dan berdasarkan percobaan yang telah dilakukan jugs dapat ditarik kesimpulan sebagai berikut:
1. Kemampuan pengolahan zat wama dan senyawa organik pada air limbah industri tekstii dengan metode fotokimia UV-H202 adalah sebagai berikut:
a. nilai intensitas warna, sebelum pengolahan nilai konsentrasi zat warna yang ada pada air limbah indusri tekstil sebesar 1.073,47 ppm Pt/Co dan setelah pengolahan menjadi sebesar 81,58 ppm Pt/Co atau mengalami penurunan sebesar 92,4%.
b. Nilai COD sebelum pengolahan sebesar 773.55 mg/l dan setelah pengolahan sebesar 140 mg/l atau mengalami penurunan sebesar 81,9%.
c. Nilai BOD5 pada air limbah sebelum pengolahan sebesar 584,6 mg/1 dan setelah mengalami pengolahan turun menjadi 42,1 mg/1, ini berarti nilai BOD5 mengalami penurunan sebesar 92,8%.
2. Kondisi pengolahan optimum yang didapat untuk pengolahan limbah dengan metode fotokimia UV-H202 adalah sebagai berikut:
a. Konsentrasi larutan H202 optimum pengolahan air limbah industri tekstil adalah sebesar 2000 ppm
b. Lama waktu penyinaran LTV optimum pada pengolahan air limbah industri tekstil adalah selama 6 jam.

Waste Processing with Photochemistry Method UV-H2O1 in Textile IndustryNowadays, development in Indonesia is undergoing very rapid growth. The situation is followed with more development and progresses in the industry section. The development and progress in the industry section will influence amount of liquid waste from industry based on quantity and quality. The waste is produced by industry has risk for environment impact, and currently environment impact will bring environment degradation becomes one of main prior problem on development, particularly for human. The industrial waste, especially liquid waste gives sufficient contribution toward water pollution, and it becomes high-risk condition. Water pollution can be main source for human contact with toxic chemical compound. This matter draws attention of related parties, considering that water is one of basic need of human being.
Through The rapid industrial development in Indonesia, at the same time will cause serious environment problem. The pollution is not only degrading environment quality but also can bring important impact for living creatures particularly human. Azo derivate as color substance is used for textile color can pollute water body. The colour substance from textile waste deposit into water able to spread surface of water body and hamper ultraviolet enters into waters. The decrease of ultraviolet penetrate into waters can cause the hamper of photosynthetic process of plant the waters to produce oxygen and it causes decreasing oxygen contents in the water and finally causes death of living creatures in the waters. Besides that, water body is polluted by textile waste is very hazardous if it is consumed by human for daily needs. Due to the several chemical compounds of textile industries have toxic character for living creatures can cause various diseases such as cancer and disfunction of organ and even can cause the mortality.
Besides having hazardous character for living creatures particularly to human, textile as waste pollution can reduce aesthetic value from water body, water body such as river or lake become not in comfortable condition because water is colored and even dark or pitch black. Aesthetic value of water body will also decrease with arising of outdoor such as ammoniac and hydrogen sulphide acid result from waste rotening by anaerobic bacteria because water body has minim oxygen content. The reduction or vanish of aesthetic value from water body will reduce economical value of water body itself, and it certainly create non-profit condition for community who stay in the surrounding area.
The chemistry compound which is generally present in textile industries waste is organic compound, this organic compound is generally azo compound color substance is used for textile coloring and dyeing. The content of organic substance in the waters can be measured with Chemical Oxygen Demand (COD) parameter or Biochemical Oxygen Demand (BOD) parameter. In order to observe color darkness is used color intensity measurement.
Nowadays, it is implemented the development of photochemistry method such as certain method to reduce organic compound with ultraviolet combine to chemical substance. This method is expected able to eliminate effectively and efficiently from the aspect of time, workers, and budget toward various kinds of organic compound, particularly organic compound comes from textile industry such as azo color substance.
The purpose of research:
1. To distinguish maximum capability of color substance and organic compound of the textile industries waste with photochemistry method UV-H202.
2. To distinguish the concentration of H202 and the maximum duration of UV radiation which give the maximum result of color and organic compound processing.
The research hypothesis are the photochemistry UV-H202 processing will reduce intensity of color and organic compound, the increasing of H2O3 concentration and the longer duration time of UV in waste processing will decrease the color intensity, COD, and BOD in textile industrial waste.
This research is using experimental method. This method is carried out the experiment to distinguish maximum capability of textile industry liquid waste with photochemistry method. This experiment is implemented through the variation of independence variable value to look for variation which has the most maximum capability.
In this research, the dependent variable is capability to process waste, is taken from reduce of color substance concentration before and after liquid waste processing, independent variable is H202 concentration which is used in processing and time duration of ultraviolet exposure.
The data of analysis data result consist of color intensity value and organic compound concentration in BOD and COD value from water sample before and after processing with photochemistry methods UV-H202.
The data are taken from parameters measurement has been explained in the previous chapter is performed in the form of tables, graphics and analyzed descriptively and the relation between several parameters by exercising with simple statistic test to determine correlation between variation of H202 concentration and variation time duration of UV radiation with color substance parameter, BOD and COD.
From the research results are proven the hypothesis; the photochemistry UV-H202 processing will reduce intensity of color and organic compound in textile industrial waste, can be accepted. Since then several conclusions are as follows :
1. Photochemistry method can accepted be utilized as alternative method for textile industrial waste processing, particularly in colour substances and organic compound in textile industrial waste. It can be shown from processing result:
a. the value of color intensity, before processing of color substance concentration in textile industry waste 1.073,47ppm Pt/Co and after processing 81,58 ppm Pt/Co or reduce by 92,4%.
b. COD value before processing 773.55 mg/l and after processing 140 mg/l or reduce by 81,9%
c. BOD value before processing 584,6 mg/l and after processing reduce 42,1 mg/l it means BOD value reduce by 92,8%
2. The optimum condition of Photochemistry UV-H202 method can be shown from processing result:
a. The concentration of H202 which give the maximum result of Photochemistry UV-H202 processing is 2000 ppm.
b. The time duration of UV radiation which gives the maximum result of Photochemistry UV-H202 processing is 6 hours."
Depok: Program Pascasarjana Universitas Indonesia, 2003
T10833
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>