Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127604 dokumen yang sesuai dengan query
cover
Lina
"Dalam makalah ini, penulis mengajukan metodologi baru dalam sistem pengenalan wajah 3-D dengan menggunakan penambahan garis ciri pada metode perhitungan jarak terpendek dalam ruang ciri. Penambahan garis ciri ini dilakukan dengan memperbanyak jumlah garis ciri tanpa menambahkan titik ciri baru, dengan membentuk sebuah garis ciri baru dari setiap titik ciri terhadap setiap garis ciri yang dibentuk dari setiap dua buah titik ciri. Dengan penambahan garis ciri ini, sistem akan memperoleh tambahan informasi variasi ciri obyek, sehingga tingkat pengenalan sistem dapat meningkat.
Dalam makalah ini, penulis juga mengembangkan metode TK-LSebagian1 dan TK-LSebagian2 sebagai metode untuk mentransformasikan citra wajah 3-D dari ruang citra spatial ke dalam representasi ruang eigennya. Data percobaan dalam penelitian menggunakan citra wajah orang Indonesia dalam berbagai sudut pandang pengamatan dan ekspresi. Pengujian terhadap sistem dilakukan untuk mengenali wajah dengan sudut pandang pengamatan yang berbeda dengan citra wajah yang dilatihkan sebelumnya. Hasil penelitian menunjukkan bahwa tingkat pengenalan tertinggi akan diperoleh sistem dengan menggunakan TK-LSebagian2 dan metode penambahan garis ciri yaitu sebesar 99.17%.

3-D Face Recognition System using Additional Feature Lines in Nearest Feature Line Method in Eigenspace Representation. In this paper, the authors propose a new method in 3-D face recognition system using additional feature lines in Nearest Feature Line method, called the Modified Nearest Feature Line method. The additional feature lines can be acquired by projecting each feature point to other feature lines in the same class without increasing the number of feature points. With these additional lines, the system will have the ability to capture more variations of face images, so it can increase the recognition rate of the system.
The authors also propose KL-TSubspace1 and KL-TSubspace2 as methods in transforming the 3-D face images from its spatial domain to their eigenspace domain. The experiments use the 3-D human faces of Indonesian people in various expressions and positions. Then, the system is applied to recognize unknown face images with different viewpoints. Experimental results shown that the system using KL-TSubspace2 and Modified Nearest Feature Line method can have the highest recognition rate of 99.17%."
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
cover
Yeni Herdiyeni
"Metode pengenalan wajah 3D pada penelitian ini merupakan metode baru menggunakan model geometri wajah dengan membangkitkan jarak garus wajah pada kondisi normal dengan berbagai pose horisontal dalam ruang eigen. Garis wajah dibangkitkan dengan menghubungkan titik-titik pada wajah. Titik-titik pada wajah diperoleh dengan membuat garis yang memiliki kemiringan 0, 45, 90 dan 125 dan melalui titik koordinat tertentu pada wajah serta memotong batas lingkar wajah. Reduksi dimensi matriks citra menggunakan Probability Principal Component Analysis (PPCA) dengan memaksimumkan fungsi likelihood. Algoritma untuk memaksimumkan fungsi likelihood adalah algoritma EM (Expectation Maximization Algorithm). Pembelajaran citra menggunakan jaringan syaraf tiruan Backpropagation. Hasil percobaan menunjukkan bahwa secara umum metode jarak garis wajah memiliki akkurasi tingkat pengenalan wajah lebih baik dan memiliki nilai Meas Square Error (MSE) yang lebih kecil dibandingkan dengan metode tingkat keabuan wajah."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
JIKT-4-1-Mei2004-40
Artikel Jurnal  Universitas Indonesia Library
cover
"Metode pengenalan wajah 3D pada penelitian ini merupakan metode baru menggunakan model geometri wajah dengan membangkitkan jarak garis wajah pada kondisi normal dnegan berbagai pose horisontal dalam ruang eigen. Garis eajah dibangkitkan dengan menghubungkan titik-titik pada wajak. Titik-titik pada wajah diperoleh dengan membuat garis yang memiliki kemiringan 0, 45, 90 dan 135 dan melalui titik koordinat tertentu pada wajah serta memotong batas lingkar wajah. Rduksi dimensi matriks citra menggunakan Probability Principal Component Analysis (PPCA) dengan mamaksimumkan fungsi likelihood. Algoritma untuk memaksimumkan fungsi likelihood adalam algoritma EM (Expectation Maximization Algorithm). Pembelajaran citra menggunakan jaringan syarat tiruan Backpropagation. hasil percobaan menunjukkan bahwa secara umum metode wajah lebih baik dan memiliki nilai Mean Square Error (MSE) yang lebih kecil dibandingkan dengan metode tingkat keabuan wajah."
Jurnal Ilmu Komputer dan Teknologi Informasi, 4 (1) Mei 2004: 40-46, 2004
JIKT-4-1-Mei2004-40
Artikel Jurnal  Universitas Indonesia Library
cover
Puput Lismawati
"Manusia cukup baik dalam mengenali wajah, betapapun miripnya wajah yang diberikan. Akan tetapi membangun model komputasional yang dapat menyamai kemampuan manusia dalam mengenali wajah merupakan pekerjaan yang sulit. Upaya pengenalan dan pengklasifikasian wajah dilakukan dengan mentransformasikan face images menjadi himpunan karakteristik dari image yang disebut vektor eigen.
Pengenalan wajah dengan menggunakan vektor eigen metode Principal Component Analysis dilakukan dengan memproyeksikan test image ke ruang yang direntang dari vektor-vektor eigen, yaitu disebut face space. Kemudian mengklasifikasikannya sebagai individu yang ?dikenali? atau ?tidak dikenali? dengan membandingkan test image tersebut di face space dengan individu pada database. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27683
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Agustien Siradjuddin
"Masalah yang biasa terjadi dalam pembuatan sistem pengenalan wajah adalah jumlah dimensi yang terlalu besar untuk diproses ke dalam classifier, sehingga biaya komputasi yang dibutuhkanpun akan semakin besar pula. Penelitian berikut mencoba untuk mereduksi dimensi dalam ruang spatial akan tetapi dari hasil reduksi dimensi ini tidak membuat proses ekstraksi fitur kehilangan informasi penting yang mengakibatkan penurunan akurasi pengenalan.
Reduksi dimensi dalam ruang spatial ini didapatkan dengan cara membangkitkan sejumlah garis pada data citra secara acak. Ada dua metode dalam membangkitan garis yaitu Fitur Garis Acak (FGA) dan Template Fitur Garis Acak (TFGA). Pada FGA, sejumlah garis dibangkitkan pada seluruh data citra secara acak. Sedangkan TFGA, sejumlah garis dibangkitkan hanya satu kali saja dan himpunan garis ini yang akan digunakan untuk membangkitkan garis pada data citra yang lain. Dari masing-masing garis ini dibangkitkan sejumlah spatial window. Vektor representasi citra didapatkan dari rata-rata intensitas yang terdapat pada spatial window tersebut. Vektor representasi citra ini akan dijadikan fitur untuk classifier. Classifier yang digunakan adalah k-nearest neighborhod dan backpropagation sebagai pembanding.
Dari hasil percobaan menggunakan database weizmann, didapatkan bahwa pengenalan akan lebih stabil jika metode untuk membangkitkan garis adalah TFGA. Selain stabil dengan metode TFGA ini akurasi pengenalan lebih baik dibandingkan dengan metode FGA pada jumlah garis yang sama. Pada jumlah garis yang terkecil dengan menggunakan classifier k-nearest neighborhod, rata-rata akurasi pengenalan metode FGA adalah 46.67% sedangkan dengan TFGA akurasi pengenalan adalah 57.14%. Dengan classifier pembanding backpropagation dan menggunakan metode TFGA didapatkan rata-rata akurasi pengenalan 78.29%. Secara umum dari keseluruhan metode semakin bertambah jumlah garis maka semakin meningkat pula tingkat akurasi pengenalan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T529
UI - Tesis Membership  Universitas Indonesia Library
cover
Vera Mukty
"Tugas Akhir ini membahas pengembangan sistem pengenalan wajah yang menggunakan metode Voting. Pada sistem ini digunakan metode Eigenface untuk melakukan ekstraksi ciri wajah, dan metode Jarak Euclidean untuk mengukur tingkat kemiripan antar citra wajah. Berdasarkan hasil pengamatan dari penggunaan metode Eigenface dan Jarak Euclidean tersebut, belum tentu citra wajah yang memiliki Jarak Euclidean terkecil adalah milik subyek yang sama dengan citra wajah input.
Pada tugas akhir ini dikembangkan metode Voting untuk mengolah n-top citra wajah hasil. Melalui metode Voting, setiap citra wajah pada n-top citra wajah hasil akan memberikan kontribusi nilai pada subyek, dan subyek yang memiliki nilai terbesar akan keluar sebagai hasil.

The focus of this study is the development of face recognition system using Voting method. This system use Eigenface method to exctract face feature, and Euclidean Distance method to meassure the similarity level between face images. According to the result of the implementation of Eigenface method and Euclidean Distance method, face image with the smallest Euclidean Distance to face image input is not always represent the same subject.
In this study Voting method is developed to process n-top face image result. In Voting method, every face image on n-top face image result will give added value for subject, and the subject with the biggest value will becoming the result."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Shinta Nataya Paramesti
"Identifikasi wajah berdasarkan ciri bibir berpengaruh pada keberhasilan pencarian citra wajah orang dikarenakan adanya variasi bentuk bibir yang dapat menjadi pembeda tiap individu. Untuk mempercepat pencarian pelaku kriminal, sebuah sistem aplikasi identifikasi wajah berdasarkan ciri bibir menjadi suatu kebutuhan. Sistem tersebut harus dapat mengekstrak ciri bibir dari sebuah citra digital menggunakan metode ekstraksi ciri yang akurat dan cepat.
Penelitian ini melakukan studi analisis kinerja metode eigenface dengan eigen fuzzy set (himpunan fuzzy eigen) untuk ekstraksi ciri bibir dalam sistem identifikasi wajah. Eigenface adalah metode ekstraksi ciri yang telah terbukti keberhasilannya dalam mengekstrak ciri wajah, sedangkan metode eigen fuzzy set dikembangkan berdasarkan teori himpunan fuzzy dan dapat digunakan untuk analisa citra. Metode deteksi bibir otomatis berdasarkan ciri warna juga dievaluasi efektifitasnya untuk perolehan citra dalam penelitian ini. Analisis dilakukan dengan metode analisis statistik desktiptif dan statistik inferensi. Uji coba dilakukan untuk dua skenario yang dibedakan berdasarkan citra bibir hasil segmentasi manual dan otomatis.
Hasil uji coba menunjukkan bahwa hasil deteksi otomatis hanya efektif mendeteksi bibir sebanyak 61.4% dan precision-recall perolehan wajah pada skenario 2 lebih rendah dari skenario 1. Metode eigen fuzzy set memiliki waktu komputasi lebih rendah dibandingkan metode eigenface. Sedangkan nilai precision-recall tertinggi dihasilkan oleh metode eigenface dengan rata-rata nilai 0.22%. Dari hasil ini disimpulkan bahwa metode ekstraksi ciri eigenface lebih efektif dibandingkan eigen fuzzy set. Sistem identifikasi wajah dengan metode eigenface untuk ekstraksi ciri kedepannya dapat dikembangkan menjadi sistem identifikasi wajah berbasis komponen wajah."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>