Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 136627 dokumen yang sesuai dengan query
cover
Edmond Febrincko Armay
"Fotogenerasi carrier memiliki distribusi ruang yang sangat berbeda dalam sel surya anorganik dan sel surya organik. Hal tersebut mengarah pada perbedaan mekanistik antara kedua sel. Generasi carrier terjadi pada antarmuka donor-akseptor disosiasi eksiton dalam sel surya organik, menghasilkan elektron dalam suatu lapisan dan hole pada lapisan lainnya ? kedua carrier telah terpisah sepanjang antarmuka saat fotogenerasi dalam sel surya organik. Sebaliknya, fotogenerasi kedua carrier sepanjang bulk dalam sel surya anorganik, menghasilkan elektron dan hole pada arah yang sama melalui fase yang sama; pemisahan carrier membutuhkan built-in potential sepanjang sel.
Pada riset ini dipelajari teori dasar yang diperlukan untuk membandingkan sel surya anorganik dan sel surya organik. Kemudian dibuat model-model untuk sel surya anorganik dan sel surya organik. Model sel surya anorganik berbasis pada material silikon yang tersusun dari dua lapisan, yaitu lapisan p-n dengan koefisien absorpsi yang berbeda-beda. Model sel surya organik tersusun dari tiga lapisan, yaitu PCBM (lapisan p), film antarmuka "eksitonik", dan MDMO-PPV (lapisan n); koefisien absorpsi hanya pada film antarmuka "eksitonik" dan bernilai konstan. Simulasi numerik yang membandingkan perbedaan piranti semikonduktor tersebut menghasilkan diagram tingkat energi, diagram rapat carrier, diagram space charge, diagram medan listrik, diagram generasi, dan diagram rapat arus diperlihatkan untuk mendemonstrasikan perbedaan pokok antara mekanisme fotokonversi piranti sel surya anorganik dan sel surya organik.

Charge carriers are photogenerated with very different spatial distributions in conventional inorganic photovoltaic cells and in organic photovoltaic cells. This leads to a fundamental mechanistic difference between them. Carriers are generated primarily at the exciton-dissociating donor-acceptor interface in organic photovoltaic cells, resulting in the production of electrons in one layer and holes in the other ? the two carrier types are thus already separated across the interface upon photogeneration in organic photovoltaic cells. In contrast, both carrier types are photogenerated together throughout the bulk in inorganic photovoltaic cells, resulting in the production of electrons and holes in the same direction through the same phase; efficient carrier separation therefore requires a built-in potential across the cell.
The basic theory necessary to compare inorganic photovoltaics to organic photovoltaics is reviewed. The models for inorganic photovoltaic and organic photovoltaic are made. Inorganic photovoltaic model based on silicon material consist of two layers i.e. p-n layers with different absorption coefficients. Organic photovoltaic model based on three layers i.e. PCBM (p layer), "exitonic" interface film, and MDMO-PPV (n layer); absorption coefficient only in "exitonic" interface film and made constant. Numerical simulations that compare semiconductor devices differing yield the energy level diagrams, carrier density diagrams, space charge diagrams, electric field diagrams, generation diagrams, and current density diagrams are presented to demonstrate this fundamental distinction between the photoconversion mechanisms of inorganic photovoltaic and organic photovoltaic devices."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T25080
UI - Tesis Membership  Universitas Indonesia Library
cover
Martin Jowan
"Pembuatan sistem eksperimen karakteristik sel surya berbasis PC telah berhasil dilakukan. Eksperimen ini bertujuan untuk mengetahui karakteristik arus dan tegangan yang dihasilkan sel surya. Sistem ini terdiri dari modul eksperimen yang berisi modul rangkaian sel surya, instrumen tegangan, instrumen arus, SST DAQ, dan perangkat lunak eksperimen karakteristik sel surya. Karakteristik sel surya yang diamati adalah nilai tegangan dan arus yang dipengaruhi oleh seperti; beban, intensitas cahaya, dan temperatur yang dapat mempengaruhi tegangan dan arus yang dihasilkan oleh sel surya.
Untuk itu instrumen tegangan dan instrumen arus dibuat untuk mengukur tegangan dan arus sel surya tersebut. SST DAQ, dengan fitur ADC yang dimilikinya untuk membaca nilai tegangan, dimanfaatkan untuk mengakuisisi output dari instrumen tegangan dan instrumen arus, sehingga instrumen arus yang terdiri dari solenoid, sensor Hall, dan pengkondisi sinyal dibuat untuk mengkonversi nilai arus sel surya menjadi tegangan supaya dapat dibaca oleh SST DAQ. Lampu halogen dipakai sebagai sumber cahaya untuk mengkarakterisasi arus dan tegangan sel surya. Perangkat lunak yang terdiri dari visual basic dan flash digunakan untuk memudahkan eksperimen dan memberikan penampilan yang menarik.
Hasil pengujian eksperimen sel surya berukuran 6.0 cm x 9.0 cm pada intensitas 14 W m-2 memiliki daya maksimum yang dapat dihasilkan 55.9 mW dengan fill factor sebesar 0.67 sehingga efisiensi dari sel surya sekitar 7 %. Penurunan nilai tegangan dan arus terhadap temperatur yaitu 19 mV K-1 dan 1.35 mA K-1. Saturasi tegangan open-circuit sel surya mulai tampak pada intensitas 9 W m-2 dan saturasi arus short-circuit didapat pada intensitas 70 W m-2 sehingga tegangan maksimum dan arus maksimum didapatkan dengan nilai 1.09 V dan 385 mA. Hal ini berlaku untuk nilai beban antara 0 sampai 100 k§Ù pada eksperimen yang telah dilakukan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S28974
UI - Skripsi Open  Universitas Indonesia Library
cover
Universitas Indonesia, 1993
TA58
UI - Tugas Akhir  Universitas Indonesia Library
cover
"Teknologi konvensional sel surya berbasis pada proses konversi satu foton menghasilkan satu pasangan elektron hole. Dengan kata lain, efisiensi kuantumnya tidak dapat melebihi 100%. Mekanisme ini melahirkan sebuah nilai batas maksimum efisiensi termodinamika yang bisa dicapai oleh sel surya sebesar 33,7%, atau lebih dikenal dengan Scockley-Queisser limit. Fenomena baru akan muncul apabila sebuah material mampu menghasilkan lebih dari sepasang elektron-hole ketika menerima satu foton, atau menyerap lebih dari satu foton sekaligus untuk menghasilkan sepasang elektron-hole berdaya ganda. Fenomena ini dikenal dengan sebutan carrier multiplication (CM)."
MRS 1:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Umar Fitra Ramadhan
"Sel surya merupakan pembangkit listrik berbasis energi terbarukan yaitu Energi Surya, oleh karena itu pengoperasian sel surya sangat tergantung dari intensitas cahaya matahari yang mengenai permukaan sel surya. Kontuinitas intensitas matahari yang mengenai sel surya sering kali terganggu oleh bayang-bayang. Bayang-bayang adalah suatu kondisi yang mengakibatkan berkurangnya radiasi sinar matahari yang dapat diterima oleh sel-sel pada panel surya. Dibanyak kasus sel surya akan tertutup oleh bayangan, baik sebagian atau seluruhnya. Bayangan yang terjadi sering disebabkan oleh awan yang lewat, bangunan tinggi, menara-menara tinggi, pohon, kotoran burung, debu, dan juga bayangan dari satu panel di sisi yang lain. Skripsi ini akan membahas variasi intensitas matahari serta luas area permukaan sel surya yang terkena bayang-bayang. Bayang-bayang disimulasikan dengan menggunakan naungan yang memiliki tingkat transparansi sebesar 48% dari intensitas matahari yang diterima. Pengukuran gangguan bayang-bayang terhadap penurunan kualitas daya keluaran dilakukan dengan menggunakan panel surya polikristalin pada jam 10.00 hinggan jam 14.00 WIB ketika panjang gelombang cahaya matahari berada pada kisaran (300 – 800 nm) yang berkaitan dengan daerah spektrum cahaya tampak (visible). Studi ini bersifat eksperimental menghasilkan nilai karakteristik tegangan dan arus keluaran yang bervariasi mengikuti kurva non linear.

The solar cell is a renewable energy, therefore the operation of the solar cell is very dependent on the intensity of the sun's light on the surface of the solar cell. The continuity of the sun's intensity on the solar cells is often disturbed by the shadows. Shadows are a condition that results in reduced sunlight radiation that can be received by cells in solar panels. In many cases, solar cells will be covered by shadows, either partially or completely. Shadows that occur are often caused by passing clouds, tall buildings, tall towers, trees, bird droppings, dust, and also shadows from one panel on the other. This thesis will discuss variations in the intensity of the sun and the surface area of ​​solar cells affected by the shadows. The shadows are simulated using a shade that has a transparency level of 48% of the received solar intensity. Measurement of shadow disturbance to the decrease in the quality of output power is done by using polycrystalline solar panels at 10.00 to 14.00 when the wavelength of sunlight is in the range (300 - 800 nm) associated with the visible light spectrum. This experimental study produces the characteristic values ​​of output voltage and current which vary according to the nonlinear curve."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
A. Harsono Soepardjo
Depok: UI-Press, 2013
PGB 0012
UI - Pidato  Universitas Indonesia Library
cover
Sulastriani
"Energi surya merupakan salah satu sumber energi alternatif yang tidak bersifat polutif, tidak dapat habis, dan dapat dikonversi menjadi energi listrik. Media yang digunakan untuk mengkonversi pancaran radiasi tersebut adalah sebuah bahan semikonduktor yang biasa disebut sel surya atau solar sel. Pengembangan teknologi solar cell di seluruh dunia kini terus dilakukan. Berdasarkan cara kerjanya, energi listrik yang dihasilkannya dapat disimpan pada sebuah batere kering sehingga dapat digunakan kapan saja. Untuk mengukur berapa besar energi yang dihasilkan, diperlukan alat ukur yang baik dan praktis, sehingga dapat diketahui berapa besar energi yang dihasilkan dari solar cell. Dalam tugas akhir ini dibuat sebuah alat dan program aplikasi berbasis komputer yang dapat mempermudah dalam pengambilan data karakteristik solar cell yang didapat secara otomatis.

Solar energy is one alternative energy source that is not polluting, can?t be exhausted, and can be converted into electrical energy. Media used to convert the radiation beam is a semiconductor material commonly called solar cells. In developing solar cell technology worldwide is now being conducted. Based on how it works, it generates electrical energy can be stored in a dry battery that can be used anytime. To measure how much energy is generated, it needs a good measuring tool and practical. Locations to determine how much energy is generated from the solar cell. In this thesis, we created a device and a computer based applications that can facilitate the retrieval of data from the solar cell characteristic are obtained automatically by the interface between the PC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43260
UI - Skripsi Open  Universitas Indonesia Library
cover
Elang Barruna A G
"Dalam waktu 68 tahun, sel surya telah berkembang pesat dan hingga saat ini sudah terdapat tiga generasi. Sel surya generasi ketiga yang merupakan sel surya perovskite memiliki peningkatan efisiensi tercepat. Di samping pesatnya perkembangan sel surya perovskite, terdapat beberapa tantangan seperti tingginya harga bahan baku, cepatnya degradasi, dan sulitnya fabrikasi elektroda yang berbahan metal. Oleh karena itu, pengaplikasian material karbon pada sel surya dapat menjadi salah satu cara untuk mengatasi tantangan tersebut karena karbon memiliki sifat stabilitas kimia yang baik, konduktivitas elektrik yang tinggi, dan berlimpah di alam. Di sisi lain, penggabungan material karbon dan Hole Transport Material seperti CuS, CuPc, dan WO3 sudah pernah dilakukan oleh beberapa peneliti dalam upaya mengurangi biaya dan waktu fabrikasi, penyesuaian tingkat level energi, dan memperbaiki kualitas kontak permukaan. Hingga saat ini, belum ada peneliti yang meneliti tentang penggabungan CuSCN dengan elektroda berbasis karbon pada sel surya perovskite. Oleh karena itu, perlu dilakukan sebuah penelitian mengenai bagaimana proses pencampuran CuSCN dan karbon serta bagaimana karakteristik material serta kinerja sel surya perovskite yang dapat dihasilkan. Pada tesis ini, dilakukan penelitian tentang pengaruh variasi persen berat CuSCN dan variasi material karbon pada elektroda sel surya perovskite dengan struktur FTO/TiO2/perovskite/CuSCN&Carbon/FTO. Proses pencampuran CuSCN dan karbon dilakukan dengan metode Ball Mill, sedangkan proses deposisi lapisan elektroda dilakukan dengan metode Doctor Blading. Karakterisasi material dilakukan dengan pengujian Scanning Electron Microscopy dan Electrochemical Impedance Spectroscopy, sedangkan pengujian kinerja dilakukan dalam kondisi gelap dan kondisi radiasi matahari. Berdasarkan hasil optimasi persen berat CuSCN pada elektroda karbon, diperoleh hasil bahwa penambahan CuSCN sebanyak 1% pada elektroda karbon menghasilkan unjuk kerja sel surya perovskite dengan nilai Isc sebesar 0,11 mA. Berdasarkan hasil optimasi variasi material karbon, diperoleh hasil bahwa sel surya perovskite dengan elektroda campuran Carbon Nanotubes dan CuSCN dapat menghasilkan kinerja sel surya perovskite terbaik dengan Isc sebesar 0,45 mA; Voc sebesar 0,52 V; dan FF sebesar 0,37.

Within 68 years, solar cells have grown rapidly; to date, there have been three generations. The third-generation solar cells, perovskite solar cells, have the fastest increase in efficiency. In addition to the rapid development of perovskite solar cells, there are several challenges, such as high raw material prices, rapid degradation, and difficulty fabricating metal electrodes. Therefore, applying carbon material in solar cells can be one way to overcome these challenges because carbon has good chemical stability, high electrical conductivity, and is abundant in nature. On the other hand, the incorporation of carbon materials and Hole Transport Materials such as CuS, CuPc, and WO3 has been carried out by several researchers to reduce fabrication costs and time, adjust energy levels, and improve surface contact quality. Until now, no researchers have investigated the incorporation of CuSCN with carbon-based electrodes in perovskite solar cells. Therefore, it is necessary to study how the process of mixing CuSCN and carbon and how perovskite solar cells' material characteristics and performance can be produced. In this thesis, a research was conducted on the effect of weight percent CuSCN variations in carbon material on the electrodes of perovskite solar cells with the structure of FTO/TiO2/perovskite/CuSCN&Carbon/FTO. The mixing of CuSCN and carbon was carried out using the Ball Mill method, while the electrode layer deposition process was carried out using the Doctor Blading method. Material characterization was carried out by Scanning Electron Microscopy and Electrochemical Impedance Spectroscopy, while performance testing was carried out in the dark and under solar radiation conditions. Based on the optimization results of the weight percent CuSCN on the carbon electrode, adding 1% CuSCN on the carbon electrode resulted in the performance of a perovskite solar cell with an Isc value of 0.11 mA. Based on the optimization of variations in carbon material, it is found that perovskite solar cells with a mixture of Carbon Nanotubes and CuSCN electrodes can produce the best perovskite solar cell performance with an Isc of 0.45 mA; Voc of 0.52 V; and FF of 0.37."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
William Harrison Winnetouw
"Seiring penambahan penggunaan energi terbarukan di dunia, semakin banyak penggunaan panel surya sebagai alternatif penghasil energi yang dapat digunakan dalam skala residensial maupun industri. Namun, terdapat kekurangan dari penggunaan panel surya sebagai alternatif yaitu efisiensi penyerapan sinar matahari yang masih kecil. Berbagai riset dilakukan untuk mendapatkan material baru sel surya yang memiliki efisiensi yang lebih besar, salah satunya adalah sel surya perovskite. Oleh sebab itu, penelitian ini bertujuan menggunakan material tambahan yaitu cesium pada material aktif sel surya perovskite berbasis prekursor methylammounium lead iodide yang dilakukan dengan metode spin-coating dengan bahan baku methylammonium iodide, cesium iodide sebagai agen doping dengan konsentrasi doping berkisar antara 0;1; dan 5%. Secara khusus, penelitian ini bertujuan untuk menguasai teknik doping kation cesium pada sel surya perovskite, mengetahui efek doping cesium apda struktur kristal, tingkat kristalinitas, absorbansi, serta mengetahui konsentrasi dopan optimal untuk menaikkan efisiensi dan stabilitas sel surya perovskite. Karakterisasi sampel dilakukan dengan menggunakan XRD, SEM, UV-Vis, Uji dan Solar Simulator. Eksperimen mengindikasikan bahwa konsentrasi cesium memberikan peningkatan ukuran butir, absorbansi serta meningkatkan efisiensi teoritis dari sel surya perovskite. Sel surya yang paling optimal didapatkan pada sel surya dengan konsentrasi doping cesium 1% dengan peningkatan kristalinitas pada fasa perovskite dari 1911 cps menjadi 1995 cps, peningkatan ukuran butir maksimal dari 1661 nm menjadi 2800 nm, peningkatan absorbansi pada rentang panjang gelombang 300-450 nm, dan peningkatan efisiensi teoretis dari 1,35 menjadi 2,88%. Berdasarkan hasil optimal dari eksperimen tersebut, dapat disimpulkan bahwa metode doping cesium pada sel surya perovskite berbasis prekursor methylammonium lead iodide meningkatkan performansi dan dapat berpotensi menjadi salah satu metode untuk menghasilkan panel surya yang memiliki efisiensi yang tinggi.

Along with the increasing use of renewable energy in the world, increasing the use of solar panels as an alternative energy producer can be used on a residential or industrial scale. However, there are drawbacks on using solar panels as an alternative, namely the efficiency of absorbing sunlight is still small. Various studies have been conducted to obtain new solar cell materials that have greater efficiency, one of which is perovskite solar cells. Therefore, this study aims to use an additional cation, namely cesium in the active material of perovskite solar cells based on the precursor methylammonium lead lodide which is fabricated by the spin-coating method with methylammonium iodide as raw material, cesium iodide as a doping agent with doping concentrations ranging from 0,1, and 5%. In particular, this study aims to understand the cesium cation doping technique in perovskite solar cells, determine the effect of cesium doping on crystal structure, crystallinity level, absorbance, and determine the optimal dopant concentration to increase the efficiency and stability of perovskite solar cells. Sample characterization was carried out using XRD, SEM, UV-Vis, Test and Solar Simulator. Experiments indicate that cesium concentrations increase grain size, absorbance and increase the power conversion efficiency of perovskite solar cells. The most optimal solar cells were found in solar cells with 1% cesium doping concentration with an increase in crystallinity in perovskite phase from 1911 cps to 1995 cps, increase in maximum grain size from 1661 nm to 2800 nm, an increase in absorbance in the wavelength range of 300-450 nm, and improvement of maximum theoretical efficiency from 1,35 to 2.88%. Based on the optimal results from these experiments, it can be concluded that the cesium doping method on perovskite solar cells based on methylammonium mead iodide precursors improves performance and can be a method for producing solar panels that have high efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>