Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27069 dokumen yang sesuai dengan query
cover
Yohan
"Telah dilakukan proses sulfonasi pada politetrafluoroetilena berikatan silang yang teriradiasi sinar-γ dan tercangkok monomer stirena (film cPTFE-g-S). Penelitian bertujuan untuk membuat bahan membran hidrofil yang dapat berperan sebagai membran penukar proton pada sel bahan bakar jenis PEMFC. Sulfonasi dilakukan dengan asam klorosulfonat dalam pelarut dikloroetana pada berbagai kondisi. Pengaruh persen pencangkokan, konsentrasi asam klorosulfonat, waktu dan suhu reaksi terhadap sifat-sifat film tersulfonasi diuji.
Hasil penelitian menunjukkan bahwa proses sulfonasi yang dilakukan pada suhu kamar tidak memberikan hasil yang sempurna. Peningkatan konsentrasi ClSO3H dan suhu reaksi mempercepat terjadinya proses sulfonasi namun juga menambah jumlah reaksi samping. Akibatnya kapasitas penukaran ion, pengikatan air, dan konduktivitas proton film menjadi semakin berkurang namun ketahanan oksidasi pada larutan perhidrol menjadi semakin bertambah. Membran cPTFE-g-SS yang dihasilkan mempunyai kestabilan dalam larutan H2O2 30% volume selama 20 jam.

Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell. Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film) have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated.
The results show that sulfonation of surface-grafted films is incomplete at room temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours."
Depok: Lembaga Penelitian Universitas Indonesia, 2007
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Arie Listyarini
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T40070
UI - Tesis Membership  Universitas Indonesia Library
cover
Kurniadi Mar`uf Supanto
"Fukoidan merupakan polisakarida sulfat, banyak mengandung L-fukosa, dan gugus ester sulfat. Polimer fukoidan memiliki struktur yang kompleks dan bervariasi pada beberapa spesies alga cokelat. Bioaktivitas fukoidan yang diketahui dan sampai saat ini banyak dimanfaatkan adalah sebagai antioksidan. Bioaktivitas fukoidan sebagai antioksidan diduga meningkat seiring berat molekul yang rendah dan posisi serta banyaknya sulfat pada fukoidan tersebut. Penelitian ini dilakukan untuk meningkatkan kadar sulfat pada fukoidan dengan sulfonasi dari hasil ekstraksi fukoidan yang berasal dari rumput laut cokelat Sargassum filipendula serta dilakukan uji aktivitasnya sebagai antioksidan. Fukoidan diekstraksi menggunakan HCl 0.1. dan sulfonasi fukoidan dilakukan dengan reagen sulfurtrioksida ndash; piridin kompleks. Fukoidan hasil ekstraksi Crude fucoidan memiliki kader sulfat sebesar 13, dan fukoidan setelah disulfonasi memiliki kenaikan kadar sulfat menjadi 20. Uji aktivitas fukoidan terhadap antioksidan dilakukan dengan metode DPPH. Diperoleh persen inhibisi crude fucoidan serta fukoidan hasil sulfonasi masing-masing sebesar 8,9 dan 10,9.

Fucoidan is. polysaccharide sulfate which contains. fucose and ester sulfate group. The fucoidan polymer has. varied and complex structure in some species of brown algae. The uses of fucoidan bioxactivity has been developed as an antioxidant. This is thought can be increase due to lower molecular weight and position and amount of sulfate in the fucoidan. Therefore, the aim of this research is to increase the measure of sulfate in fucoidan through sulfonation using fucoidan extraction result from Sargassum filipendula brown seaweed and tested its activity as antioxidant. Fucoidan was extracted using 0.1. HCl. Sulfonation of fucoidan was performed with complex sulphurtryoxide pyridine complex reagents. Extracted fucoidan Crude fucoidan had 13 sulfate content, and fucoidan sulfonation product had an increase of sulfate content to 20. Test of fucoidan activity against antioxidant was performed by DPPH method. Obtained percent inhibition of crude fucoidan and fucoidan sulfonation product was respectively 8,9 and 10,9.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulianti Sampora
"Teknik Enhanced Oil Recovery EOR menggunakan injeksi kimia dengan surfaktan anionik berperan dalam meningkatkan perolehan residu minyak, khususnya di daerah reservoar yang memiliki karakteristik tertentu. Penelitian ini bertujuan untuk mengembangkan produk surfaktan anionik dari asam oleat dan polietilen glikol 400, sesuai dengan karakteristik yang diperlukan pada teknik EOR. Surfaktan anionik dihasilkan melalui esterifikasi asam oleat dan polietilen glikol 400 pada berbagai suhu 120 C; 140 C; dan 150 C . Setelah esterifikasi, proses dilanjutkan dengan reaksi sulfonasi pada perbandingan mol 1 : 1; 1 : 1,05; dan 1 : 1,5 dan waktu pencampuran 2 jam; 4 jam; dan 6 jam . Karakterisasi kimia dan fisik dilakukan dengan metode titrasi dan melalui pengukuran : Fourier Transform Infra Red FTIR ; Nuclear Magnetic Resonance NMR ; Particle Size Analyzer PSA ; dan Spinning Drop Interfacial Tensiometer TX 500.
Hasil optimum esterifikasi Polietilen glikol dioleat PDO adalah pada suhu 150 C dan waktu 6 jam, dengan hasil bilangan asam, ester, penyabunan, dan iod, masing-masing 61,78 mgKOH/g sampel; 56,28 mg HCl/g sampel; 105,73 mgKOH/g sampel; dan 63,21 gr I2/100 g sampel. Sedangkan optimasi sulfonasi PDOS diperoleh dari perbandingan mol 1:1 dan waktu pencampuran 4 jam, dengan hasil analisa bilangan asam, ester, penyabunan, iod masing-masing sebesar 23,95 mgKOH/g sampel; 144,42 mgHCl/g sampel; 89,19 mgHCl/g sampel; dan 33,80 g I2/100 g sampel. Spektrum FTIR dan hasil analisa H-NMR menunjukkan bahwa senyawa ester dan sulfonasi telah terbentuk. Karakterisasi partikel PDOS menghasilkan ukuran partikel 4,723 ?m, potensial zeta -78,8 mV, dan tegangan antar muka IFT sebesar 0,0031 mN/m.

Enhanced Oil Recovery EOR technique through chemical injection using an anionic surfactant improves the recovery of oil residues, particularly in a reservoir area that has certain characteristics. The present study aimed to develop an aninoic surfactant producted by oleic acid and polyethylene glycol 400, which corresponds to the characteristics required in the EOR technique. The anionic surfactant was synthesized by esterification of oleic acid and polyethylene glycol 400 at various temperatures 120 C 140 C and 150 C . After esterification, the process was then continued by sulfonation at various mole ratios 1 0,5 1 1 and 1 1,5 and mixing times 2 hours 4 hours and 6 hours . Chemical and physical characterization were performed by titration method and a number of measurements Fourier Transform Infra Red FTIR Nuclear Magnetic Resonance NMR Particle Size Analyzer PSA and Interfacial Tensiometer TX 500.
The optimum results of the esterification of Polyethylene glycol dioleate PDO were achieved at the temperature of 150 C and time of 6 hours, with acid number, ester, saponification, and iod yields 61,78mgKOH g sample 56,28 mgHCl g sample 105,73 mgKOH g sample 63,21 g I2 100 g sample respectively. While sulfonation optimization PDOS was obtained at 1 1 mole ratio and 4 hours mixing time, with the results of acid number, ester, saponification, and iod yields 23,95 mgKOH g sample 144,42 mgHCl g sample and 89,19 mgKOH g sample and 33,80 gr I2 100 g sample respectively. FTIR spectra and H NMR analysis showed that ester and sulfonation compounds were formed. Characterization of PDOS particles showed that the particle size was 4,723 m, zeta potential was 78,8 mV, and interfacial tension IFT was 0,0031 mN m.Key words EOR, polymer injection, anionic surfactant, oleic acid, polyethylene glycol 400, esterification, sulfonation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49340
UI - Tesis Membership  Universitas Indonesia Library
cover
Yohan
"Telah dilakukan pencangkokan monomer stirena pada film ETFE dengan teknik iradiasi awal. Penelitian dilakukan dengan cara meradiasi film ETFE dengan sinar-γ pada variasi dosis total radiasi dari 2,5 sampai 12,5 kGy dan variasi laju dosis dari 1,3 sampai 1,9 kGy/jam. Kemudian kopolimer teriradiasi dicangkok menggunakan monomer stirena dalam berbagai pelarut etanol, 2-propanol, dan toluena dengan variasi konsentrasi dari 20 sampai 70% volume, suhu pencangkokan dari 50 sampai 90oC, dan waktu pencangkokan dari 2 sampai 12 jam. Hasil penelitian menunjukkan bahwa persen pencangkokan meningkat dengan meningkatnya dosis total radiasi dan menurunnya laju dosis radiasi. Diperoleh kondisi optimum percobaan pada dosis total 10 kGy, laju dosis 1,9 kGy/jam, pelarut 2-propanol, stirena 40%.

Synthesis of Fuel Cell Membrane: Copolymerization of Styrene on ETFE Film by Grafted pre-Irradiation. Preirradiation Grafting styrene monomer on ETFE film has been prepared. Research has been performed by γ-ray radiation at various total dose from 2.5 ? 12.5 kGy and various dose rate from 1.3 ? 1.9 kGy/hour. Irradiated copolymer is then grafted by styrene monomer in various solvent: ethanol, 2-propanol, and toluene, various concentration from 20 ? 70% volume, various temperature from 50 ? 90oC, and various grafting time from 2 ? 12 hours. The results showed that percent of grafting is increase with increase of total dose and decrease of rate dose. The optimum experiment conditions are obtained at total dose 10 kGy, dose rate 1,9 kGy/hour, 2-propanol solvent, 40% volume styrene, 4 hours grafting time, and 70oC grafting temperature."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
"Membrane of fuel cell has been prepared by grafted pre-irradiation. Matrix of ETF15, PTFE, and
cross-linked PTFE (PTFE(cD) _films have been irradiated by y-ray at various total dose from 2.5 - 12.5
kGy and various dose rate at 1.9, 1.6, and 1.3 kGy/hour. Irradiated films are then grafted by styrene
monomer in various solvent: ethanol, 2-propanoL and toluene with various concentration _[rom 20 - 60%
volume, various grafting temperature from 30 - 90°C and various grafting time from 2 - 12 hours.
Obtained the good relative condition to grafted pre-irradiation such as using 1,9 kGy/hour dose rate, 10
kGy total dose, 2-propane! solvent, 40% volume styrene 4 hours grafting time, and 70°C grafting
temperature gave percent of grafting ETFE-g-S = 46.69% weight, PTFE-g-S = 11.13% weight, dan
PTFE(cU-g-S = 31.07% weight.
"
Jurnal Teknologi, 19 (4) Desember 2005: 318-326, 2005
JUTE-19-4-Des2005-318
Artikel Jurnal  Universitas Indonesia Library
cover
"Metode baru dan karakterisasi membran komposit PVA-TMSP tersulfonasi untuk aplikasi sel bahan bakar metanol langsung (DMFC) telah diinvestigasi. Pembuatan membran PVA-TMSP tersulfonasi dilakukan melalui tahapan pengikatan silang antara larutan PVA dan trimethoxysilyl propanethiol (TMSP) dengan metode sol-gel dan katalis HCl pekat. Konsentrasi TMSP divariasikan dari 1% hingga 3%. Larutan dalam bentuk gel dituangkan di atas lembaran logam untuk mendapatkan lembaran tipis membran. Membran tersebut kemudian dioksidasi dengan H2O2 pada berbagai variasi konsentrasi (10-30%), untuk mengkonversi gugus merkapto menjadi gugus sulfonat. Pengamatan terhadap proses pengikatan silang serta keberadaan gugus sulfonat, dilakukan dengan teknik spektroskopi inframerah, yang hasilnya ditunjukkan dengan frekuensi vibrasi masing-masing pada 1140-1200/cm and 1200-1145/cm.
Pengamatan membran dengan SEM-EDX menunjukkan hasil bahwa distribusi partikel silika dalam reaksi sol-gel tidak merata yang disebabkan oleh cepatnya laju pertukaran reaksi kondensasi. Nilai derajat pengembangan menurun drastis seiring dengan meningkatnya konsentrasi metanol di dalam membran PVA-TMSP tersulfonasi, yang berkebalikan dengan nilai derajat pengembangan untuk membran komersial Nafion. Nilai maksimum kapasitas penukar ion dari membran adalah 1,82 mmol/g sedangkan konduktivitas proton tertinggi sebesar 3,9 x 10-4S/cm. Dengan demikian dapat disimpulkan bahwa membran tersebut berpotensi untuk diaplikasikan di dalam sistem DMFC.

Novel preparation and characterization of sulfonated polyvinyl alcohol (PVA)?trimethoxysilyl propanethiol (TMSP) membranes for direct methanol fuel cell (DMFC) application have been investigated. Preparation of sulfonated PVA- TMSP membrane was conducted by crosslinking steps using sol-gel method and a catalyst of concentrated HCl. TMSP concentrations were varied from 1% to 3%. The gel solution was cast on to the membrane metal plate to obtain membrane sheets. The membrane was then oxidized in H2O2 concentrations of (10-30%) to convert the mercapto groups into sulfonate group.
Investigations of the cross-linking process and the existence of sulfonate group were conducted by infrared spectroscopy as shown for frequencies at 1140?1200/cm and 1200-1145/cm respectively. The scanning electron microscope?energy dispersive X-rays (SEM-EDX) of the membranes indicated that the distribution of silica particles from sol-gel reaction products was uneven due to the fast exchange rate of condensation. The degree of swelling decreased as methanol concentrations in crease for sulfonated PVA-TMSP membrane which opposed toward the value of commercial Nafion membrane. The maximum value of ion exchange capacity of the membrane was 1.82 mmol/g whereas the highest proton conductivity was 3.9 x 10-4 S/cm. Therefore it can be concluded that the membrane was a potential candidate for application in DMFC.
"
Depok: Direktorat Riset dan Pengabdian Masyarakat UI;Politeknik Negeri Bandung. Departemen Teknik Kimia, 2012
J-pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Hariyotejo Pujowidodo
"Tesis ini berisi sebuah studi mengenai pemodelan matematis sebuah sistem sel tunam membran pertukaran proton tipe kanal paralel dan serpentine 1 dimensi dan 2 dimensi kondisi tunak (steady state) dan isotermal . Pemodelan mencakup perhitungan numerik persamaan konservasi massa dan momentum melalui teknik volume hingga (finite volume) tools komersial. Diskretisasi model dilakukan pada sub sistem kanal aliran (channel flow) dan lapisan membran MEA (membrane electrolyte assembly). Untuk mengetahui karakteristik utama gas reaktan di dalam kanal dalam hubungannya terhadap densitas arus. Dari hasil distribusi momentum dan massa yang diperoleh, selanjutnya menggunakan hubungan arus dan konsentrasi reaktan didapatkan bahwa kanal distribusi tipe serpentine mempunyai rugi aliran yang lebih besar daripada kanal paralel. Semakin besar tekanan statik rata-rata yang terjadi maka akan meningkatkan konsentrasi distribusi gas reaktan pada permukaan difusi.

This study explaining the development of Mathematical Modeling for Paralel and Serpentine channel distribution in Proton Exchange Membrane Fuel Cell (PEMFC). The models defined on the steady, isothermal, 1 and 2 dimensional, applying the governing equations of momentum and mass transfer to obtain the dynamic and mass parameter of reactants distribution. Model discretization carried on the sub systems of channel flow and Membrane Electrolyte Assembly (MEA) layer to know the main characteristic of reactant gas in the channel related to the current density. Finally using the relationship between concentration and current, from the result of momentum and mass distribution has been obtained that the serpentine channel shows the more higher pressure drop than the paralel one. Generally the higher pressure the more heavier concentration taken place on the diffusion layers.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26243
UI - Tesis Open  Universitas Indonesia Library
cover
Leli Utari
"Proton Exchange Membrane Fuel Cell (PEMFC) merupakan salah satu jenis energi alternatif fuel cell yang sangat potensial untuk menggantikan energi fosil yang semakin terbatas jumlahnya. PEMFC ini memiliki daya yang cukup besar, efisiensi dan densitas arus yang tinggi, serta ramah lingkungan. Oleh karena itu, PEMFC ini banyak digunakan dalam aplikasi peralatan portable seperti Chemical Energy Car yang merupakan prototipe mobil berbahan bakar dari energi kimia. Salah satu kendala dalam penggunaan PEMFC pada peralatan portable adalah mengenai penyimpanan gas hidrogen. Untuk aplikasi tersebut, diperlukan media penyimpanan gas hidrogen yang mudah dalam penyimpanan dan penanganannya. Salah satu alternatifnya ialah dengan menggunakan NaBH4. Melalui proses hidrolisis Sodium borohidrida, hidrogen dapat terbentuk dengan bantuan sedikit katalis.
Pada penelitian ini, pembelajaran akan dipusatkan pada perancangan dan fabrikasi seluruh komponen - komponen Chemical Energy Car serta pengaturan kebutuhan reaktan (hidrogen dan oksigen) untuk Chem E Car. Adapun tahapan penelitian yang diusulkan meliputi: reaksi hidrolisis NaBH4 dengan bantuan katalis CoCl2 untuk menghasilkan gas hidrogen , perancangan seluruh komponen Chem E Car, fabrikasi cell stack PEMFC, fabrikasi Membrane Electrode Assembly (meliputi tahap pembuatan tinta katalis, tahap coating tinta katalis, preparasi membran Nafion, serta Hot Press MEA), fabrikasi tempat penyimpanan hidrogen, fabrikasi kerangka mobil, perakitan seluruh komponen - komponen Chem E Car, serta pengujian Chem E Car secara keseluruhan.
Reaksi hidrolisis sodium borohidrida ini memiliki orde reaksi 0 yang menunjukan bahwa laju reaksi hanya dipengaruhi oleh konstanta kecepatan reaksinya. Semakin tinggi konsentrasi katalis Cocl2 yang digunakan maka konstanta kecepatan reaksi akan semakin besar. Hubungan tersebut dapat dilukiskan dalam persamaan k = 0.0509 Cc - 0.011. Kebutuhan gas hidrogen untuk PEMFC yang telah difabrikasi relatif kecil sekitar 0.06 ml/s karena dengan luasan MEA 36 cm2, PEMFC hasil fabrikasi hanya dapat menghasilkan densitas arus sebesar 24.25 mA/cm2 dan densitas daya sebesar 5.8 mW/cm2. Dengan daya tersebut Chem E Car dapat bergerak tanpa beban dengan kecepatan 0.083 m/s . Massa Chemical Energy Car keseluruhan tanpa beban adalah 1100 gram ( 245 gram pelat bipolar, 245 gram pelat penutup, 120 gram baut, serta 500 gr untuk kerangka mobil dan reaktor hidrogen).

Proton Exchange Membrane Fuel Cell (PEMFC) is one kind of fuel cell as an alternative energy that is potential to substitute fossil fuel that has limitation. Using PEMFC as a energy source for Chem E Car due to the power that it produces is high enough, efficient, high current density, and ecological. Therefore, this PMFC mostly used in portable application such as Chemical Energy Car, a prototype car using chemical energy for its fuel. But, this PMFC has a problem if it uses for portable application, it needs hydrogen storage that is easy in handling and storing. Alternative for that problem is to use NaBH4. Hydrogen can be produced through hydrolysis reaction of Sodium Borohydride in addition of catalyst.
This research only focused on designing and fabricating all the Chemical Energy Car's components and managing reactants needs (Hydrogen and Oxygen) for Chemical Energy Car. The research phases done are: hydrolysis reaction of NaBH4 to produce hydrogen in addition of CoCl2 as a catalyst, design of all the Chem E Car components, cell stack fabrication, membrane electrode assembly (MEA) (including the making of catalyst ink, coating, nafion membrane preparation, and hot press MEA), hydrogen storage fabrication, Chem E Car components assembly, and overall test of the Car.
As a result, hydrolysis reaction of Sodium Borohydride has zero order that shows the reaction rate influenced by reaction rate constant. Higher the concentration of the catalyst used higher the reaction rate constant. The relation of that can describe on this formula k = 0.0509 Cc - 0.011. Reactant needed for PEMFC is 0.06 ml/s (MEA 36 cm2). This PEMFC can produce current density in value of 24.25 mA/cm2 and power density in value of 5.8 mW/cm2. With this power, Chem E Car can move 0.083 m/s without charge. The mass total Chem E Car is 1,110 g (245 g for bipolar plate, 245 gram for end plate, 120 gram for bolt, and 500 gram for the car's body and hydrogen reactor).
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49736
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>