Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15028 dokumen yang sesuai dengan query
cover
cover
Bambang Heru Susanto
"[ABSTRAK
Industri bahan bakar bio berkembang dengan cepat sebagai konsekuensi dari naiknya harga minya dan meningkatnya kepedulian terhadapa perubahan iklim global. Produksi biodiesel dari transesterifikasi minyak nabati saat ini merupakan rute yang utama untuk menghasilkan bahan bakar nabati (BBN) untuk mesin diesel. Namun, biodiesel memiliki viskositas tinggi, titik kabaut dan tuang yang tinggi, emisi nitrogen oksida (NOx) yang lebih tinggi, densitas energi rendah dan keausan injektor/mesin tinggi. Beberapa rute telah dicoba untuk mengurangi viskositas, seperti blending minyak nabati dengan bahan bakar diesel, mikroemulsi dengan alkohol, pirolisis dan hidrodeoksigenasi (HDO). Solar terbarukan melalui HDO dapat dihasilkan dari beragam bahan baku minyak nabati seperti minyak sawit dan minyak jarak pagar tanpa mengorbankan kualitas bahan bakar. Reaksi pembentukan solar terbarukan melalui HDO minyak nabati melibatkan katalis untuk menurunkan energi aktivasi reaksi dan meningkatkan selektifitasnya. Jenis katalis yang digunakan didalam studi ini adalah katalis berbasi Pd dan berbasis NiMo yang disanggakan pada ZAL atau C. Metode microwave polyol process (MP) cocok untuk preparasi katalis berbasis Pd sedangkan metode rapid cooling (RC) cocok untuk preparasi katalis berbasis NiMo. HDO asam oleat sebagai senyawa model, minyak sawit dan minyak jarak pagar dilakukan pada suhu 375°C dan 400°C dengan tekanan H2 15 bar didalam reaktor autoclave 250 ml semibatch berpengaduk. Didalam HDO, katalis Pd/ZAL-1 selektif terhadap jalur dekarboksilasi sedangakan katalis NiMo/ZAL selektif terhadap jalur dekarboksilasi dan dekarbonilasi katalitik. Soalr terbarukan yang dihasilkan dari HDO memiliki densitas dan viskositas yang sesuai sesuai dan indeks setana yang lebih tinggi disertai dengan kesetaraan dalam kualitasnya dengan solar komersial turunan minyak bumi namun sedikit lebih rendah daripada solar terbarukan komersial (NExBTL®).;

ABSTRACT
The biofuels industry is growing rapidly as a result of high petroleum prices and increasing concerns about global climate change. Biodiesel production from trans-esterification of vegetable oils is currently the primary route for production of diesel engine biofuels from vegetable oils. However, biodiesel still has higher viscosity, higher cloud point and pour point, higher nitrogen oxides (NOx) emissions, lower energy density, and higher injector/engine wear. Several routes have been tried for reducing this viscosity, such as diluted vegetable oil with diesel fuel, microemulsification with alcohols, pyrolysis and hydrodeoxygenation (HDO). Renewable diesel through HDO can be produced from many kind of vegetable oil feeed stock such as palm oil (edible oil) and jatropha curcas (non-edible oil)without compromising fuel quality. Forming reaction of renewable diesel through HDO vegetable oil involves catalyst to decrease the activation energy of the reaction and increase its selectivity. The type of catalyst used in this study is Pd and NiMo supported on ZAL or C. Microwave polyol method (MP) is suitable for preparation of Pd-based catalyst while rapid cooling method (RC) is suitable for preparation of NiMo-based catalyst. The HDO of oleic acid as model compound, palm oil and jatropha curcas oil were carried out at temperature of 375°C and 400°C with H2 pressure of 15 bar in a 250 mL semibatch stirred autoclave reactor. In HDO, Pd/ZAL-1 catalyst was selective to decarboxylation route while NiMo/ZAL was selective to decarboxylation and catalytic decarbonilation. Renewable diesel synthesized through HDO have suitable density and viscosity and quite high cetane index with similar in their quality with comercial diesel derived from crude oil but slightly lower than comercial renewable diesel (NExBTL®).;The biofuels industry is growing rapidly as a result of high petroleum prices and increasing concerns about global climate change. Biodiesel production from trans-esterification of vegetable oils is currently the primary route for production of diesel engine biofuels from vegetable oils. However, biodiesel still has higher viscosity, higher cloud point and pour point, higher nitrogen oxides (NOx) emissions, lower energy density, and higher injector/engine wear. Several routes have been tried for reducing this viscosity, such as diluted vegetable oil with diesel fuel, microemulsification with alcohols, pyrolysis and hydrodeoxygenation (HDO). Renewable diesel through HDO can be produced from many kind of vegetable oil feeed stock such as palm oil (edible oil) and jatropha curcas (non-edible oil)without compromising fuel quality. Forming reaction of renewable diesel through HDO vegetable oil involves catalyst to decrease the activation energy of the reaction and increase its selectivity. The type of catalyst used in this study is Pd and NiMo supported on ZAL or C. Microwave polyol method (MP) is suitable for preparation of Pd-based catalyst while rapid cooling method (RC) is suitable for preparation of NiMo-based catalyst. The HDO of oleic acid as model compound, palm oil and jatropha curcas oil were carried out at temperature of 375°C and 400°C with H2 pressure of 15 bar in a 250 mL semibatch stirred autoclave reactor. In HDO, Pd/ZAL-1 catalyst was selective to decarboxylation route while NiMo/ZAL was selective to decarboxylation and catalytic decarbonilation. Renewable diesel synthesized through HDO have suitable density and viscosity and quite high cetane index with similar in their quality with comercial diesel derived from crude oil but slightly lower than comercial renewable diesel (NExBTL®)., The biofuels industry is growing rapidly as a result of high petroleum prices and increasing concerns about global climate change. Biodiesel production from trans-esterification of vegetable oils is currently the primary route for production of diesel engine biofuels from vegetable oils. However, biodiesel still has higher viscosity, higher cloud point and pour point, higher nitrogen oxides (NOx) emissions, lower energy density, and higher injector/engine wear. Several routes have been tried for reducing this viscosity, such as diluted vegetable oil with diesel fuel, microemulsification with alcohols, pyrolysis and hydrodeoxygenation (HDO). Renewable diesel through HDO can be produced from many kind of vegetable oil feeed stock such as palm oil (edible oil) and jatropha curcas (non-edible oil)without compromising fuel quality. Forming reaction of renewable diesel through HDO vegetable oil involves catalyst to decrease the activation energy of the reaction and increase its selectivity. The type of catalyst used in this study is Pd and NiMo supported on ZAL or C. Microwave polyol method (MP) is suitable for preparation of Pd-based catalyst while rapid cooling method (RC) is suitable for preparation of NiMo-based catalyst. The HDO of oleic acid as model compound, palm oil and jatropha curcas oil were carried out at temperature of 375°C and 400°C with H2 pressure of 15 bar in a 250 mL semibatch stirred autoclave reactor. In HDO, Pd/ZAL-1 catalyst was selective to decarboxylation route while NiMo/ZAL was selective to decarboxylation and catalytic decarbonilation. Renewable diesel synthesized through HDO have suitable density and viscosity and quite high cetane index with similar in their quality with comercial diesel derived from crude oil but slightly lower than comercial renewable diesel (NExBTL®).]"
2015
D2088
UI - Disertasi Membership  Universitas Indonesia Library
cover
Indo Aribinuko
"Sinamaldehida merupakan salah satu produk bahan alam yang paling melimpah yang ditemukan pada kulit kayu spesies Cinnamomum dan terkenal karena aplikasinya dalam medis, pemberi cita rasa, industri parfum, dan sebuah intermediet berharga untuk banyak produk organik sintesis. Pada penelitian ini, sinamaldehida disintesis dengan reaksi katalitik homogen dan heterogen. Reaksi katalitik homogen dilakukan menggunakan larutan NaOH, sedangkan reaksi katalitik heterogen dilakukan menggunakan beberapa katalis padatan basa, yang mana katalis NaOH/Al2O3 yang dipreparasi dengan mencampur dan menggerus padatan NaOH dan Al2O3 (14 % berat Al2O3) telah sukses menampilkan reaksi kondensasi aldol silang dalam menghasilkan sinamaldehida. Katalis yang telah disiapkan dikonfirmasi dengan metode XRD. Reaksi kondensasi aldol antara benzaldehida dan asetaldehida dilakukan pada 70 oC dengan memvariasikan waktu reaksi. Produk reaksi dianalisis dengan GC dan GC-MS. Konsentrasi katalis = 3,5 % (% berat total reagen); rasio molar antara benzaldehida dan asetaldehida = 1,1:1; dan waktu reaksi 6 jam; distribusi produk sinamaldehida yang didapat 8,06 %.

Cinnamaldehyde is one of the most abundant natural product found in Cinnamomum sp. bark and is well known for its application in medicine, flavor, perfumery, and also a valuable intermediate compound for many synthesized organic products. In this research, cinnamaldehyde was synthesized by homogeneous and heterogeneous catalytic reactions. The homogeneous catalytic reaction was conducted using solution of NaOH, where as the heterogeneous catalytic reaction were conducted using some solid base catalysts, in which the catalyst NaOH/Al2O3 prepared by mixing and grinding solids of NaOH and Al2O3 (14 % of Al2O3 weight) has succeeded to perform the cross aldol condensation reaction of benzaldehyde and acetaldehyde in producing cinnamaldehyde. The catalyst prepared was confirmed by XRD method. The aldol condensation reaction of benzaldehyde and acetaldehyde were conducted at 70 oC by varying the reaction times. Reaction product was analyzed by GC and GC-MS. The catalyst concentration was 3,5 % (% weight of total reagents); molar ratio between benzaldehyde and acetaldehyde was 1,1:1; and time reaction was 6 hours; the distribution product cinnamaldehyde obtained was 8,06 %."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52454
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arbhyando Tri Putrananda
"Penelitian ini dilakukan konversi gas metana yang berasal dari biogas bio-metana menjadi metanol dengan bantuan katalis ZSM-5 hirarki termodifikasi oksida logam kobalt dan besi. Material ZSM-5 hirarki disintesis dengan metode double template menggunakan TPAOH dan PDD-AM sebagai secondary template. Analisa dengan SEM-EDS diperoleh morfologi material bentuk coffin yang merupakan ciri khas material ZSM-5. Hasil analisa dengan FTIR dan XRD juga menunjukkan bahwa puncak dan pola difraksi material ZSM-5 hasil sintesis memiliki kesamaan dengan ZSM-5 standar. Impregnasi oksida logam kobalt dan besi ke dalam material ZSM-5 diperoleh loading sebesar 2,1-2,5 dengan analisa menggunakan instrumen AAS.
Hasil analisa dengan XPS menunjukkan bahwa oksida logam kobalt dan besi yang terbentuk adalah Co3O4, dan Fe2O3 pada material ZSM-5. Uji aplikasi oksidasi parsial bio-metana menjadi metanol dilakukan dalam atmospheric fixed batch reactor dengan perbandingan bio-metana:N2 sebesar 0,2:2 bar. Hasil uji aplikasi dengan menggunakan bio-metana diperoleh katalis Fe2O3/ZSM-5 hirarki memiliki yield metanol tertinggi sebesar 17,61. Besarnya kandungan oksigen pada bio-metana dapat meningkatkan yield metanol pada reaksi katalisis oksidasi parsial metana menjadi metanol.

This study aimed to converted methane gas from biogas bio methane to methanol using modified cobalt and iron metal oxide hierarchical ZSM 5. Hierarchical ZSM 5 synthesized by double template methods using TPAOH and PDD AM as the secondary template. SEM EDS analysis shows the morphology of coffin shaped which is the characteristic of ZSM 5 material. The results of FTIR and XRD analysis also show that peak and diffraction pattern of ZSM 5 synthesized material have in common with standard of ZSM 5. The impregnation of cobalt and iron metal oxide into ZSM 5 material obtained by loading of 2,1 2,4 using AAS instrument.
The results of XPS analysis show that cobalt and iron metal oxide formed are Co3O4 and Fe2O3 in ZSM 5 material. The partial oxidation of bio methane to methanol is carried out in an atmospheric fixed batch reactor with a bio methane N2 ratio of 0,2 2 bar. The results of application using bio methane show the hierarchical Fe2O3 ZSM 5 catalyst has the highest methanol yield of 17,61. The amount of oxygen concentration in bio methane can increase the yield of methanol in partial oxidation of bio methane to methanol.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Piero Collins
"Tujuan dari penelitian ini adalah untuk mendapatkan model reaktor unggun diam 2D yang valid untuk sintesis dimetil eter melalui dehidrasi metanol, mendapatkan parameter kinetika melalui studi kinetik, serta mendapatkan pengaruh parameter proses dan geometri terhadap kinerja reaktor melalui studi sensitivitas. Metode penelitian ini terdiri dari penentuan geometri, penentuan model matematis, simulasi, dan analisis dan pembahasan Model matematis dikembangkan melalui persamaan neraca massa (celah unggun dan katalis), neraca momentum, dan neraca energi. Pada studi kinetik, reaktor dimodelkan berbentuk silinder dengan diameter 24 mm dan tinggi 600 mm. Hasil dari studi kinetik menghasilkan nilai energi aktivasi reaksi dehidrasi metanol sebesar 50,4 kJ/mol, nilai faktor eksponensial sebesar 1782 mol.m.s/kg2, nilai panas adsorpsi air sebesar -31,17 kJ/mol dan panas adsorpsi metanol sebesar -1,73 kJ/mol. Pada studi sensitivitas, reaktor memiliki dimensi 5 cm dan tinggi 3 m. Hasil dari studi sensitivitas penelitian ini menunjukan bahwa konversi metanol dan yield DME terbaik yang dihasilkan berada saat temperatur umpan 563 K, tekanan umpan 7,5 bar, laju alir gas 24 ml/h, panjang reaktor 5 m, dan diameter reaktor 5 cm.

This study aimed to obtain a valid 2D stationary bed reactor model for the synthesis of dimethyl ether through methanol dehydration, obtain kinetic parameters through kinetic studies, and obtain the effect of process and geometry parameters on reactor performance through sensitivity studies. This research method consists of the determination of geometry, the determination of mathematical models, simulations, and analysis and discussion. Mathematical models are developed through mass balance equations (bed gap and catalyst), momentum balance, and energy balance. In the kinetic study, the reactor is modeled as a cylinder with a diameter of 24 mm and a height of 600 mm. The results of the kinetic study resulted in the activation energy value of the methanol dehydration reaction of 50.4 kJ/mol, the value of the exponential factor of 1782 mol.ms/kg2, the heat value of water adsorption of -31.17 kJ/mol and the heat of adsorption of methanol of -1, 73 kJ/mol. In the sensitivity study, the reactor has dimensions of 5 cm and a height of 3 m. The results of the sensitivity study of this study showed that the best methanol conversion and DME yields were at a feed temperature of 563 K, a feed pressure of 7.5 bar, a gas flow rate of 24 ml/h, a reactor length of 5 m, and a reactor diameter of 5 cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farizan Rahmat Reksoprodjo
"Dengan semakin menipisnya cadangan dan produksi minyak di Indonesia, dibutuhkan sumber energi alternatif yang dapat menggantikan pemakaian BBM. Salah satunya adalah dimetil eter (DME). DME dapat digunakan sebagai substitusi bahan bakar diesel serta LPG. Selama ini DME disintesis dari metanol dan dimurnikan dalam dua kolom distilasi, dimana kolom ini menyumbang 50-70% dari total ongkos produksi. Dengan menggunakan proses distilasi reaktif, konversi metanol dapat ditingkatkan dengan signifikan sekaligus memurnikan produk DME pada waktu yang sama, sehingga dapat memangkas ongkos produksi DME dengan signifikan. Kendala dari penerapan distilasi reaktif adalah rumitnya gabungan fenomena perpindahan dan reaksi kimia yang terjadi pada zona reaksi. Pada penelitian ini dibuat simulasi CFD zona reaksi kolom distilasi reaktif untuk sintesis DME dari metanol menggunakan bantuan piranti lunak COMSOL Multiphysics. Hasil simulasi digunakan untuk menentukan pengaruh tinggi zona, komposisi umpan, dan temperatur umpan terhadap komposisi keluaran dari produk gas zona reaksi, konversi metanol, dan profil temperatur sepanjang zona. Hasil simulasi menunjukkan peningkatan konversi yang signifikan dengan peningkatan tinggi zona dan temperatur umpan, sementara komposisi umpan mempengaruhi kemurnian DME yang keluar dari zona secara signifikan. Gabungan ketiga parameter pada keadaan optimum menghasilkan konversi total metanol sebesar 99%.

With the decreasing amount of oil supply and production in Indonesia, a utilization of alternative energy is highly on demand. One of the promising energy source is dimethyl ether (DME). DME can be used as a diesel fuel and LPG substitute. Conventionally, DME is synthesized from methanol and purified using two distillation columns, which contributes about 50-70% to the cost of production. By using reactive distillation process, the conversion of methanol can be enhanced greatly while purifying the DME at the same time, thus cutting the cost of production significantly. The problem to apply this process is the complicated behavior from transport phenomena and chemical reaction inside the reaction zone. Therefore, in this research a reaction zone inside reactive distillation column is simulated using CFD software, with synthesis of DME from metanol as a base case. The simulation is done using COMSOL Multiphysics. The purpose of this research is to know the influence of zone height, feed composition, and feed temperature to the gas product of reaction zone, methanol conversion, and the temperature profile across the zone. Simulation results show a significant increase in conversion by increasing the zone height and feed temperature, while the feed composition greatly affect the gas product composition. Combination of this three parameter at its optimum value results in methanol total conversion about 99%."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44419
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mutammimal Ahkam, Author
"Sintesis nanozeolit telah dilakukan dengan teknik seeding, dimana seed merupakan zeolit Y dengan tetraetilortosilikat (TEOS) sebagai sumber silika dan aluminium isopropoksida Al[((CH3)2CHO)]3 sebagai sumber aluminium dan tetrametilammonium hidroksida (TMAOH) sebagai molekul pengarah struktur. Proses kristalisasi dilakukan dengan teknik refluks pada suhu 100oC selama 192 jam. Kondisi optimum untuk pertumbuhan kristal zeolit adalah pada pH 9 dengan lama pertumbuhan kristal FAU selama 18 jam pada suhu 100oC dengan volume seed 10 mL dalam 20 mL larutan koloid FAU. Nanozeolit hasil sintesis dikarakterisasi menggunakan XRD, SEM-EDS, FTIR dan BET. Pola XRD menunjukkan nanozeolit memiliki struktur zeolit Y, yang diperkuat dengan rasio Si/Al sebesar 1,84 dari karakterisasi dengan EDS. Pencitraan dengan SEM menunjukkan bahwa kristal zeolit tumbuh saling bertumpuk membentuk agregat dengan ukuran 2 µm. Analisis dengan metode BET menunjukkan luas permukaan spesifik zeolit, diameter pori rata-rata dan volume pori berturut-turut adalah 521,682 m2/g, 10,667 Å, dan 0,2783 cc/g. Untuk pemisahan gas, telah dilakukan sintesis membran nanozeolit pada suatu kasa baja stainless dengan teknik redispersi. Membran selanjutnya diuji untuk aplikasi pemisahan gas metanol-etanol sebagai gas model dan dideteksi menggunakan GC-FID. Pengamatan awal menunjukkan bahwa gas etanol dapat tertahan oleh membran.

Abstract
Nanozeolit synthesis was conducted by seeding method, in which the seed is a zeolite Y with tetraethyil orthosilicate (TEOS) as silica source and aluminium isopropoxide Al[((CH3)2CHO)]3 as a source of aluminum and tetramethylammonium hydroxide (TMAOH) as the structure directing agent. Crystallization process carried out by using reflux at a temperature of 100oC for 192 hours. The optimum conditions for crystal growth of zeolite crystals at pH 9 with FAU-term growth for 18 hours at a temperature of 100oC with seed volume 10 mL in 20 mL of colloid solution FAU. Nanozeolite synthesis products were characterized using XRD, SEM-EDS, FTIR and BET. XRD pattern shows nanozeolite has the structure of zeolite Y, which is reinforced with Si/Al ratio of 1.84 from the characterization by EDS. SEM imaging showed that the zeolite crystals grow over one another to form aggregates with a size of 2 µm. The analysis by the BET method shows specific surface area of zeolite, average pore diameter and pore volume are 521.682 m2/g, 10.667 Å and 0.2783 cc/g, respectively. For gas separation, synthesis membrane of nanozeolite has been done in a stainless steel mesh by redispersion method. Membranes were then tested for gas separation applications of methanol-ethanol as a gas model and detected using GC-FID. Initial observations indicate that ethanol gas can be restrained by the membrane. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S206
UI - Skripsi Open  Universitas Indonesia Library
cover
Kurniyasari
"Sintesis nanozeolit dilakukan dengan teknik seeding. Seed yang digunakan merupakan koloidal zeolit Y dengan tetraethyl orto silicate (TEOS) sebagai sumber silika, aluminium isopropoxide Al[(CH3)2CHO)]3 sebagai sumber aluminium dan tetramethylammoniumhydroxide (TMAOH) sebagai template organik. Proses dilakukan dengan sistem refluks pada suhu 100ºC selama 192 jam dengan kondisi optimum pertumbuhan zeolit pada pH 9 dan waktu aging selama 18 jam pada suhu 100ºC dengan menambahkan koloidal seed ke dalam koloidal prekursor FAU. Untuk pemisahan gas, disintesis membran nanozeolit Y menggunakan silika berpori seperti, aerogel silika sebagai support, dengan komposisi zeolite Y/aerogel silika 2:1. Karakterisasi dengan XRD, SEM-EDX, FTIR dan PSA menunjukkan bahwa zeolit hasil sintesis merupakan zeolit FAU tipe Y dengan rasio Si/Al 3.2 dan berukuran 2 nm. Sedangkan karakterisasi XRD dan FTIR untuk membran nanozeolit menunjukkan bahwa membran yang dihasilkan bersifat nonpolar dan mengalami transformasi menjadi alumina silika berpori lain yang belum diketahui rasio Si/Al nya akibat penambahan aerogel silika yang belum terbebas dari template (pelarut organik) yang digunakan. Membran selanjutnya diuji untuk aplikasi pemisahan gas metanol-etanol dan dideteksi menggunakan GC-FID. Hasil pemisahannya menunjukkan bahwa membran hanya efektif digunakan pada analisa pertama dan kedua.
Nanozeolite synthesized by seeding method. Colloidal crystals of zeolite Y used as seeds were synthesize with tetraethyil orthosilicate (TEOS) as silica source and aluminium isopropoxide Al[((CH3)2CHO)]3 as a source of aluminum and tetramethylammonium hydroxide (TMAOH) as organic template. The process carried out in reflux system at 100ºC for 192 hours with optimum growth condition of the zeolite at pH 9 and aging time for 18 hours at 100ºC with adding of colloidal seed into colloidal precursors FAU. For gas separation application, membrane nanozeolite Y synthesized using porous silica such as, a aerogel silica, as a support, with the composition of zeolite Y/aerogel silica 2:1. Characterization by XRD, SEM-EDS, FTIR and PSA showed that the zeolite synthesis is FAU type Y zeolite with ratio Si/Al 3.22 and a size of 2 nm. Whereas, the characterization of XRD and FTIR for the membrane nanozeolite show that the resulting membrane is nonpolar and has formed a new structure of the unknown ratio of Si/Al was due to the addition of aerogel silica that have not been liberated from the template (organic solvent) is used. Futher tested for membrane gas separation applications of methanol-ethanol and detected using GC-FID.The results of separation showed that the membrane is only effective on the first and second analysis."
Depok: Universitas Indonesia, 2012
S42433
UI - Skripsi Open  Universitas Indonesia Library
cover
Edo Agunganugrah
"Meningkatnya populasi penduduk yang berakibat pada peningkatan kebutuhan energi, terbatasnya cadangan energi, sampai dengan efek negatif dari bahan bakar fosil adalah alasan terciptanya energi alternatif berbahan baku mikroalga Nannochloropsis sp.. Optimasi sintesis biodiesel ini, salah satunya dipengaruhi oleh katalis yang digunakan. Penggunaan katalis yang tepat dapat menghasilkan hasil FAME pembentuk biodiesel yang optimal. Proses sintesis mikroalga Nannochloropsis sp. ini dimulai dari kultivasi selama ± 216 jam yang kemudian diekstraksi dengan metode perkolasi dengan pelarut n-heksana.
Hasil ekstrak ini kemudian disintesis dengan proses transesterifikasi dengan bantuan katalis yang berbeda yaitu KOH dan NaOH dengan variasi penambahan berat sebesar 0,5 %; 1 %; dan 1,5 % berat. Produk yang dihasilkan kemudian dipisahkan untuk mendapatkan fase metil esternya yang kemudian dilanjutkan dengan proses pemurnian. Selanjutnya produk biodiesel diuji komponennya dengan menggunakan alat instrumentasi gas kromatografi dengan metode pengujian EN 14103. Dari pengujian ini, didapatkan hasil bahwa dengan katalis KOH dengan penambahan berat sebesar 1% memberikan persen FAME pembentuk biodiesel sebesar 98,8%.

The increasing population resulting in increased energy demand, limited energy reserves, until the negative effects of fossil fuels are the reasons for the creation of alternative energy made from microalgae Nannochloropsis sp .. One of optimization of the biodiesel synthesis, is influenced by the catalyst used. Proper use of catalysts can produce biodiesel FAME optimal shaper. Synthesis process microalgae Nannochloropsis sp. For the beginning is needed cultivation for ± 216 hours which is then extracted by percolation method with n-hexane solvent.
This extract was then synthesized by transesterification process with different catalysts, namely KOH and NaOH with the addition of weight variation of 0.5%, 1% and 1.5% weight. The resulting product is then separated to obtain methyl esters phase followed by a purification process. Further products are tested biodiesel components using gas chromatography instrumentation tools with the test method EN 14103. From this test, showed that by the addition of KOH catalyst weight percent of 1% gives FAME biodiesel forming 98.8%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52540
UI - Skripsi Membership  Universitas Indonesia Library
cover
Almas Mafazi
"ABSTRAK
Lawson atau 2-hydroxy-1,4-naphtaquinone adalah senyawa yang berasal dari 1,4- naphtaquinone yang dilaporkan memiliki manfaat yang baik dalam hal uji aktivitas biologis dan farmakologi seperti antimikroba, antiretik, antioksidan, dan aktivitas baik untuk penderita tuberkulosis. Dalam skala produksi senyawa Lawson dapat meningkatkan waktu dan efisiensi dalam pembentukan senyawa antioksidan dengan menggunakan katalis asam amino (L-proline). Dalam penelitian ini asam amino (L-proline) yang digunakan sebagai katalisator untuk sintesis senyawa Lawson melibatkan pereaksi benzaldehida, sinamaldehida dan 2-hidroksibenzaldehida. Karakterisasi Katalis L-prolin dan sintesis senyawa Lawson dilakukan menggunakan FT-IR, GC-MS dan UV-Vis, Kromatografi Lapis Tipis dan uji antioksidan dengan metode DPPH.
ABSTRACT
Lawson or 2-hydroxy-1,4-naphtaquinone is a compound derived from 1,4-naphtaquinone which is reported to have good benefits in terms of biological and pharmacological activity tests such as antimicrobial, antiretic, antioxidant, and good activity for tuberculosis sufferers. In the production scale of Lawson compounds, it can increase the time and efficiency in the formation of antioxidant compounds by using an amino acid catalyst (L-proline). In this study, the amino acid (L-proline) which is used as a catalyst for the synthesis of Lawson compounds involves the reagents benzaldehyde, cinamaldehyde and 2 hydroxybenzaldehyde. Characterization of L-proline catalyst and synthesis of Lawson compounds were carried out using FT-IR, GC-MS and UV-Vis, Thin Layer Chromatography and antioxidant assays using the DPPH method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>