Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81344 dokumen yang sesuai dengan query
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara). Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds. The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T25915
UI - Tesis Open  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Christofer Kevin
"Segregasi adalah sebuah fenomena pemisahan fraksi berukuran kecil dan besar didalam suatu campuran sehingga timbul keberadaan agregat kasar dan agregrat halus pada suatu campuran yang tidak merata. Akibat distribusi yang tidak seragam tersebut, kemungkinan timbulnya lubang, pengelupasan, dan retak pada aspal jalan raya sangat mungkin terjadi. Maka dari itu penting untuk kita bisa melakukan tindakan pencegahan sebagai bentuk meminimalisir kemungkinan terjadinya fenomena tersebut. Segregasi pada aspal umumnya biasa dideteksi lewat inspeksi visual secara manual. Namun, dalam menggunakan metode tersebut dinilai penilaian yang didapatkan akan cenderung subjektif dan diperlukan waktu yang lama. Dengan demikian, penelitian kali ini dilakukan untuk memberikan solusi terbaru untuk mendeteksi daerah segregasi dengan cara yang lebih kredibel, waktu yang lebih cepat, dan ekonomis. Solusi tersebut dengan memanfaatkan metode pengolahan citra digital yang masih jarang penggunaanya. Dalam prosesnya, metode ini akan dicoba diimplementasikan bersama dengan metode Support Vector Machine. Kemudian, variabel yang akan digunakan sebagai fokus utama adalah standar deviasi. Pada penelitian kali ini akan dilakukan pengujian klasifikasi daerah segregasi dan non segregasi pada lingkungan aspal jalan di Universitas Indonesia.

Segregation is a phenomenon of separating small and large fractions in a mixture, resulting in the presence of coarse aggregate and fine aggregate in an uneven mixture. As a result of the non-uniform distribution, the possibility of potholes, raveling, and cracks in the asphalt of the highway is very likely to occur. Therefore, it is important for us to be able to take preventive measures as a form of minimizing the possibility of this phenomenon occurring. Segregation in asphalt is generally detected through manual visual inspection. However, in using the assessment method obtained will tend to choose and take a long time. Thus, this research was conducted to provide a new solution to detect segregation areas in a more credible, faster and economical way. This solution utilizes digital image processing methods that are still rarely used. In the process, this method will be implemented together with the Support Vector Machine method. Then, the variable that will be used as the main focus is the standard deviation. In this study, we will test the classification of segregated and non-segregated areas on the asphalt road environment at the University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gausul Furida Firdaus
"Didalam skripsi ini dijelaskan tentang konsep Least Square Support Vector Machines (LS-SVM) untuk pengembangan sistem pengenalan tanda nomor kendaraan bermotor. Sistem akan mengenali plat nomor kendaraan untuk keperluan proses identifikasi secara otomatis. Pengenalan karakter merupakan modul inti dalam sistem yang mengenali tanda nomor kendaraan dari video. Yang menjadi fokus penelitian ini ialah ketepatan dalam mengenali setiap karakter, kecepatan proses, tingkat ketelitian hasil pengenalan akibat kondisi blur, posisi plat nomor yang miring, kecepatan perekaman video, suasana pengambilan video, resolusi video, dan jumlah data latih. Metode Least Square Support Vector Machine (LS-SVM) digunakan untuk meningkatkan akurasi dan kecepatan komputasi dengan kernel linier serta one against one untuk metode multiclass. Metode deteksi garis tepi dan morphology digunakan pada proses lokalisasi plat nomor. Untuk mengenali karakter secara akurat proses training dipisah antara karakter angka dan huruf. Hasil penelitian menunjukan tingkat ketelitian pengenalan tanda nomor kendaraan mencapai maksimal 98.66% untuk resolusi 1280x720p dan jumlah data latih sebanyak 15. Akurasi minimal yang diujikan pada resolusi 320x240 dan jumlah data latih sebanyak 3 diperoleh sebesar 25.50%.

In this paper, we review the use of least square support vector machines (LS-SVM) concept in development system of license plate recognition. License plate of vehicle will recognize by system for identification process automatically. Charackter recognition is a core of system which is essentially multi-classification problem. The major focus of research is identification each character accurately and rapidly in case of blurs, tilt, noise, video resolution, video capturing atmosphere and amount of training set. LS-SVM with linier kernel and one against one for multiclass problem use to further improve recognition accuracy and speed of LPR system. Edge detection and morphology use in license plate localization process of system LPR. In other to recognize a number plate more accurately we separate trained model with number and English character. Our method got a maximum recognition rate 98.66% in resolution 1280x720p with 15 training set. Minimum recognitoin rate that have tested is 25.50% for resolution 320x240 with 3 training set."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54470
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fairuz Zahira
"Dengan berkembangnya teknologi, sensor telah menjadi sebuah alat untuk membantu manusia dalam hal apapun, mulai dari kesehatan hingga teknologi. Perkembangan teknologi yang ada saat ini membuat sebuah ponsel cerdas memiliki berbagai macam sensor. Hal ini tentu saja lebih praktis dan nyaman dibandingkan alat sensor yang biasanya tidak nyaman untuk digunakan. Sensor-sensor tersebut nantinya dapat dimanfaatkan dengan mengolah datanya untuk menjadi sebuah Human Activity Recognition.
Penelitian ini akan mengevaluasi sebuah aplikasi untuk menyimpan data sensor dengan menggunakan Android Studio dengan menggunakan Support Vector Machine untuk menentukan keakuratan data. Melalui aplikasi pendeteksi sensor, data akan dikumpulkan dari relawan yang melakukan empat macam gerakan. Gerakan itu terdiri dari berjalan, duduk, berdiri, dan berbaring. Data inilah yang kemudian diolah menggunakan metode SVM yang keluarannya menunjukkan tingkat akurasi pengklasifikasian tiap data sensor.

With the development of technology today, sensors have long been a tool to help humans in everything from health to technology. Fortunately, the current technological developments make a smartphone have a variety of sensors. This is, of course, more practical and comfortable than sensor devices which are usually not comfortable to use. These sensors can later be utilized by processing the data to become an Activity Recognition.
This study will evaluate an application to store sensor data using Android Studio by using Support Vector Machine to determine the accuracy of the data. Through the sensor detection application, data will be collected from volunteers who carry out four types of movements. The movement consists of walking, sitting, standing, and lying down. This data is then processed using the SVM method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Utami
"[ABSTRAK
Kanker payudara adalah tumor ganas yang tumbuh akibat pertumbuhan sel-sel
jaringan yang tidak normal pada jaringan payudara. Kanker payudara pada wanita
merupakan penyakit yang kini paling banyak diderita dibandingkan jenis kanker
lainnya. Cara yang dilakukan agar penyakit ini tidak memiliki kesempatan untuk
menyebar adalah dengan mendeteksinya sedini mungkin dengan menggunakan
mammografi.
Pada penelitian ini penulis telah merancang suatu sistem yang menggunakan
komputer untuk mendeteksi dan mengklasifikasi kanker payudara pada citra
mammogram. Citra mammogram yang digunakan adalah citra mammogram dari
Mommographic Image Analysis Society (MIAS) yang terdiri dari 322 citra.
Pengolahan awal citra pada sistem ini menggunakan metode Otsu Thresholding,
pendeteksian tepi dengan menggunakan metode Canny, dan metode dilasi. Ciri
yang digunakan pada sistem ini adalah Gray Level Co-occurrence Matrix
(GLCM) dan Discrete Wavelet Transform (DWT). Metode pengklasifikasian yang
digunakan pada penelitian ini adalah Support Vector Machine (SVM).
Sistem memiliki ketahanan yang baik terhadap noise salt and pepper pada nilai
noise tertentu pada tiap jenis citra mammogram yang digunakan. Tingkat
keakuratan berkisar 80% pada saat diberi noise sebesar -16dB pada citra
mammogram jinak dan ganas. Keakuratan sistem juga teruji cukup baik untuk
jumlah data latih yang hanya sebesar 70% dimana tingkat keakuratan
pendeteksian dan pengklasifikasian adalah sebesar 80,6%.

ABSTRACT
Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %.;Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %., Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %.]"
2015
T42928
UI - Tesis Membership  Universitas Indonesia Library
cover
Ian Herahman
"Sudah sejak lama tanda tangan menjadi salah satu cara untuk melakukan otentikasi dalam kehidupan sehari-hari mulai dari pengesahan dokumen, surat- surat penting bahkan untuk transaksi perbankan. Namun tingkat keamanan dari penggunaan tanda tangan ini tergolong rendah karena tanda tangan dapat ditiru dengan mudah. Seiring dengan perkembangan teknologi, digunakan teknik verifikasi tanda tangan online untuk meningkatkan keamanan dalam otentikasi tanda tangan.
Penelitian ini akan menganalisa performa sistem verifikasi tanda tangan online dengan menggunakan algoritma SVM dan GMM pada database SVC 2004 yang mengandung 7 fitur pada setiap tanda tangan. Database ini memiliki 40 dataset tanda tangan dimana setiap dataset terdiri dari 20 tanda tangan asli dan 20 tanda tangan tiruan atau 1600 tanda tangan secara keseluruhan.
Berdasarkan hasil simulasi dengan menggunakan 10 data training, sistem verifikasi GMM menghasilkan FRR sebesar 4,5%, FAR 3% dan waktu komputasi rata-rata 21,3 detik sedangkan pada SVM dihasilkan FRR 2,625%, FAR 1,25% dan waktu komputasi rata-rata 1,84 detik.

For a long time, signature has become one of many authentication methods that commonly used in daily life such as document and other obligations authentication, even for banking transaction. However the use of signature could be classified as low level security authentication because it can easily forged. With the advanced of technology, online signature verification has been used to increase the security level in signature authentication.
This research will analyze the performance of online signature verification using SVM and GMM algorithm on SVC 2004 signature database which contains 7 features of each signature. The database has 40 contributors who sign 20 authentic signatures, while 20 other are forged ones. In total the database has 1600 signatures.
Based on simulation results using 10 training data, signature verification using GMM resulted in 4,5% FRR, 3% FAR and average computation time of 21,3 seconds, while SVM has 2,625% FRR, 1,25% FAR and average computation time 1,84 second.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44640
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhimas Yudha Prawira
"Twitter merupakan salah satu media sosial yang digunakan secara massive di Indonesia. Para pengguna Twitter ini membicarakan berbagai macam hal, salah satunya terkait pencalonan presiden. Perbincangan para pengguna Twitter ini memiliki nilai sentimen baik positif maupun negatif. Dukungan masyarakat terhadap masing-masing kandidat calon presiden dapat diketahui dengan melihat sentimen masyarakat melalui perbincangan mereka di Twitter, hal ini sering disebut juga sebagai analisis sentimen. Namun, jumlah pengguna dan obrolan para pengguna Twitter yang sangat banyak mengakibatkan data yang akan diproses membutuhkan waktu yang cukup lama. Untuk melakukan proses analisis sentimen para pengguna Twitter secara cepat dan otomatis dapat digunakan bantuan mesin. Salah satu metode yang digunakan untuk melakukan proses analisis sentimen adalah Support Vector Machine (SVM). Pada dasarnya, semakin banyak data yang digunakan sebagai data training dalam pemilihan model fungsi klasifikator maka akan memberikan generalisasi akurasi analisis sentimen untuk data testing yang tinggi pula. Namun di sisi lain, semakin banyaknya data training juga akan menyebabkan besarnya dimensi ruang fitur. Hal ini membuat mesin membutuhkan waktu yang cukup lama dalam melakukan pembentukan fungsi klasifikator. Untuk menanggulangi hal ini, akan dilakukan metode optimasi fitur sehingga mesin dapat tetap membentuk fungsi klasifikator dengan akurasi yang tinggi namun dengan dimensi ruang fitur yang rendah.

Twitter is a social media that used in Indonesia massively. Twitter users talk (tweet) about various things, one of them is about presidential nomination. Twitter user conversations have a positive or negative sentiment. Community support for each presidential candidate can be determined by looking at the public sentiment through their conversations on Twitter, this is often referred to sentiment analysis. However, the number of users and tweets cause the data to be processed requires quite a long time. Machine can be used to make the process of Twitter sentiment analysis quickly and automatically. One method that used to perform the sentiment analysis process is a Support Vector Machine (SVM). Basically, the more data that used as data training in the model selection function will give a high accuracy generalization sentiment analysis on data testing. On the other hand, the increasing number of training data will also cause large dimensional feature space. This makes the machine takes a long time to perform model selection. To overcome this problem, feature optimization will be performed. Feature optimization will preserve the high accuracy of the model, but with a low dimensional feature space."
Universitas Indonesia, 2014
S57179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>