Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123713 dokumen yang sesuai dengan query
cover
Laksmita Rahadianti
"Latar belakang penelitian ini adalah kebutuhan penerapan pengenalan wajah dalam berbagai aplikasi dunia nyata. Pengenalan wajah dapat dilakukan dengan beberapa pendekatan, salah satunya adalah pendekatan dengan jaringan syaraf tiruan. Salah satu algoritma yang dikenal dan digunakan adalah Fuzzy Neuro Learning Vector Quantization (FNLVQ). Pernyataan masalah yang muncul adalah tingkat pengenalan FNLVQ konvensional yang masih bisa ditingkatkan dan kebutuhan akan jaringan yang mampu membaca citra yang mengandung noise. Tujuan riset ini adalah untuk memperlajari karakteristik algoritma FNLVQ melalui eksperimen dan pengujian terhadap citra asli dan citra dengan noise, pengembangan algoritma FNLVQ berbasiskan dimensi dalam rangka meningkatkan tingkat pengenalan serta mengujinya dengan citra asli dan citra dengan noise, serta perbandingan performa antara keduanya. Ada 2 kriteria pengukuran hasil, yaitu tingkat identifikasi dan klasifikasi. Tingkat identifikasi kemampuan jaringan untuk mengidentifikasi citra sebagai kelas yang sesuai sedangkan tingkat klasifikasi adalah kemampuan jaringan untuk memisahkan antara citra yang teregistrasi dan tidak teregistrasi. Tingkat identifikasi algoritma berbasiskan vektor konvensional adalah 30% dan meningkat hingga 85% dengan algoritma berbasiskan dimensi. Dalam hal tingkat klasifikasi, algoritma konvensional cenderung tidak mampu mengenali data tidak teregistrasi, sedangkan algoritma berbasiskan dimensi mampu memisahkan data teregistrasi dan tidak teregistrasi dengan baik. Untuk citra dengan noise, kedua algoritma mengalami penurunan pengenalan. Tingkat identifikasi algoritma berbasiskan dimensi masih tidak lebih baik daripada algoritma konvensional berbasiskan vektor untuk beberapa jenis noise, tetapi tingkat klasifikasi yang dicapai lebih baik antara pengenalan data teregistrasi dan tidak teregistrasi.
The background of this research was the need to apply face recognition in many applications in real life. Face recognition can be done using a number of approaches, one of them is by using artificial neural networks. A known algorithm used to train a neural network is the Fuzzy Neuro Learning Vector Quantization (FNLVQ). The research questions emerging from this background were the issue of the FNLVQ recognition rate that can still be increased and the need to create a network that is robust to noise. The research objectives were to study of the characteristics of the FNLVQ algorithm using experiments and testing it with both pure and noisy images, in attempt to increase the recognition rate the dimension-based approach to the FNLVQ learning algorithm was developed and tested with both pure and noisy images, and finally the two algorithms were then compared and analyzed. There were 2 criterions of measurement, the identification rate and classification rate. The identification rate is the ability of the algorithm to identify each image as the right person, and the classification rate is the ability of the algorithm to classify an image as a registered or unregistered person. The identification rate was around 30% with the conventional vector based algorithm, and could be increased to 85% with the dimension based algorithm. For the classification rate, with the conventional algorithm the unregistered data could not be recognized and with the new dimension-based approach, the unregistered and registered data could be differetiated. As for the noisy images, both algorithms experienced a decreased recognition rate. The identification rate of the dimension based algorithm still did not exceed the recognition rate of the vector based algorithm for most noises, but the classification rate was more stable between both registered and unregistered clusters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Hary Budiarto
"ABSTRAK
Sistem penciuman elektronik terdiri dari 3 bagian yaitu sistem sensor yang merubah besaran aroma menjadi besaran listrik, sistem elektronik yang mengukur besar perubahan frekuensi sensor dan sistem jaringan neural buatan yang melakukan pengenalan aroma. Peningkatan kemampuan pengenalan aroma yang cepat, tepat dan akurat pada sistem neural buatan sangat diperlukan oleh sistem penciuman elektronik ini, untuk itu perlu dikembangkan metode fuzzy learning vector quantization.
Metode FLVQ merupakan metode jaringan neural buatan berbasis pada vector quantization yang mengintegrasikan teuri fuzzy dalam proses pembelajarannya dan mempunyai algoritma yang sederhana tetapi berkemampuan tinggi dalam pengenalan aroma. Pengembangan fuzzy learning vector quantization berfokus pada proses pembelajarannya terutama pada cara merubah fuzziness vektor pewakil. Berdasarkan cara perubahan fuzzinessnya ada tiga variasi FLVQ yang dinamakan FLVQ konstan, yaitu merubah lebar fuzziness vektor pewakil dengan besaran yang konstan; FLVQ variabel, yaitu merubah lebar fuzziness vektor pewakil berdasarkan nilai similaritas; dan FLVQ tunggal, yaitu merubah lebar fuzziness vektor pewakil hanya pada salah satu bagian sisinya.
Hasil Penelitian dengan sampel aroma produk marta tilaar dan aroma etanol menunjukkan bahwa jaringan neural buatan FLVQ mempunyai kemampuan pengenalan yang lebih baik bila dibandingkan dengan propagasi balik."
1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muchamad Irvan G.
"Tugas akhir ini merupakan lanjutan dari penelitian sebelumnya (Sanabila, 2008) dalam pengenalan sudut wajah dengan konsep yang sama, yaitu data acuan awal memiliki interval tertentu, dibuat data acuan baru menggunakan interpolasi, lalu data uji dihitung jaraknya terhadap semua data acuan, data acuan dengan jarak terdekat merupakan hasil tebakan. Perbedaan dalam penelitian ini adalah penggunaan data rata-rata dan data fuzzy sebagai data acuan, perbedaan dalam PCA yang dilakukan, serta penggunaan control point placement dalam interpolasi Bezier kuadratik.
Skema eksperimen dibagi menjadi dua, menggunakan set data yang sama dengan penelitian sebelum ini dan menggunakan set data yang lebih kecil intervalnya. Selain itu, penelitian ini juga mencakup pengenaan distorsi.
Kesimpulan dari peneltian ini adalah penggunaan data rata-rata lebih baik daripada data masing-masing foto yang harus dipisahkan berdasarkan kelas wajah terlebih dahulu, penggunaan PCA memberi hasil yang baik, algoritma dengan data fuzzy belum memberi hasil sebaik data rata-rata, pengenaan distorsi kurang mempengaruhi hasil pengenalan algoritma untuk eksperimen yang memakai data rata-rata, dan pemakaian control point placement menghasilkan tingkat pengenalan yang lebih baik untuk eksperimen dengan data rata-rata.

This final project is a continuity of previous research about angle estimation with the same main concept: with reference data in some intervals, new reference data with smaller intervals was made with the use of interpolation, and distances between testing data and all reference data was calculated, the reference data with the closest distance was the algorithm?s estimation (Sanabila, 2008). Differences made were the use of average data (crisp data) and fuzzy data for each angle as reference data, differences in PCA algorithm, and the use of control point placement in quadratic bezier interpolation.
Experiment scenarios were divided into two main schemes based on the intervals of the data set, the first one was an experiment scheme with the same data set intervals with previous research and another one was experiment scheme with smaller intervals. Data manipulation with noise addition have also been done in some experiment schemes.
Some of the Conclusions were: use of average data was more efficient than one data for each picture, the use of PCA gave better result than experiments without PCA, experiments with average data gave better result than with fuzzy data, noise addition to data did not effect the recognition rate of the algorithm for experiments with average data (crisp), control point placement gave better result in experiments with average data.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Andry Sunandar
"Telah dilakukan penelitian terhadap pengembangan algoritma FNGLVQ sehingga memiliki karakteristik adaptif terhadap data input sehingga besaran perubahan vektor referensi memiliki besaran nilai yang adaptif. Karakteristik adaptif didapatkan dengan melakukan modifikasi terhadap perubahan update bobot dengan melakukan penurunan fungsi keanggotaan fuzzy tidak hanya terhadap parameter mean (yang dilakukan pada FNGLVQ awal) namun penurunan dilakukan terhadap kedua nilai min dan max sehingga besaran perubahan nilai min dan max akan bervariasi (tidak konstan seperti FNGLVQ) yang tergantung dari besaran input yang digunakan.
Karakteristik ini dapat meningkatkan akurasi dalam percobaan dalam ketiga jenis data, yakni data EKG Aritmia, data pengenalan Aroma dengan 3 campuran, serta data Sleep secara keseluruhan, namun perbedaan nilai akurasi terbesar didapatkan dari pengujian data pengenalan aroma 3 campuran. Pengembangan karakteristik adaptif terhadap algoritma FNGLVQ dilakukan dengan kedua jenis fungsi keanggotaan yakni fungsi keanggotaan segitiga dan fungsi keanggotaan PI, dan FNGLVQ adaptif dengan fungsi keanggotaan PI sedikit lebih baik dibandingkan FNGLVQ adaptif dengan fungsi keanggotaan segitiga.

This research has been conducted on the development of FNGLVQ algorithms which have adaptive characteristics to the input data so that the amount of change in the reference vector has a magnitude of adaptive value. Adaptive characteristics are obtained by modifying the update changes the weight by doing a fuzzy membership function derivation. This is not only performed on the parameters of the mean (which is done at the beginning FNGLVQ) but they are derivated to both min and max values so that the amount of change in the weight and is continued with min and max values will vary (not constant as in the case of FNGLVQ) which in turn depends on the amount of inputs used.
These characteristics may increase the accuracy of the experiment in all three types of data, including data Arrhythmia ECG, data recognition Aroma with 3 mix, as well as overall Sleep data, but the biggest difference is the accuracy of values which have obtained from the test for 3 mixed aroma data recognition. Development of adaptive characteristics of the algorithm FNGLVQ has been performed with both types of membership functions namely triangular membership functions and PI membership functions, and FNGLVQ PI adaptive membership functions has been found to be slightly better than FNGLVQ adaptive triangular membership functions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38545
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haryadi Herdian
"Pemetaan suatu citra gambar dari long range CCTV kepada koordinat nyata pada peta merupakan hal yang baru. Pengetahuan ini dapat digunakan dalam berbagai macam keperluan seperti : peletakan kamera CCTV pada ujung ? ujung daerah perkotaan untuk pendeteksian bencana (kebakaran, pencurian, dll). Pada penulisan laporan ini, penulis akan mencoba suatu metode pemetaan citra kepada koordinat nyata. Koordinat nyata tersebut bukanlah suatu koordinat x,y,z pada permukaan geografis melainkan koordinat pixel citra satelit yang mengambil gambar perkotaan tersebut. Input yang digunakan dalam metode ini adalah sudut pemotretan CCTV terhadap objek yang digunakan. Sudut yang dibentuk tersebut dapat berubah-ubah dan mengandung banyak ketidakpastian (uncertainty). Untuk mengatasi permasalahan tersebut maka penulis menggunakan logika fuzzy dalam memasukkan input sudut pemotretan. Sistem ini diujikan dengan data hasil simulasi percobaan. Pengembangan sistem ini dapat diarahkan kepada pemetaan pada permukaan geografis.
Image mapping from long range CCTV to real coordinate in map is an unordinary knowledge. This knowledge can be applied to many uses such as : set up a CCTV camera in the end of city to detect a disaster (fire, robbery, etc). In this final year project, the writer triesnto implement a new method to mapped an image from CCTV image to real coordinate. the real coordinate that is mentioned is not a X, Y, Z coordinate in land surface but pixel coordinate in satellite image that pictured the city. Angle that has been made between CCTV with the object is an input to the system. The problem is it is dynamic and has many uncertainty. To solved the problem, the writer use fuzzy logic within an angle. This system is tested with simulation data, it also can be developed to the land surface mapping."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Maria Susan Anggreainy
"Sistem perolehan citra merupakan bidang penelitian yang berkembang pesat seiring dengan semakin banyaknya jumlah koleksi citra. Zoran telah mengembangkan sistem perolehan citra dengan menggunakan atribut tingkat rendah yaitu spasial warna. Namun pada sistem tersebut masih ditemukan satu kekurangan yaitu pendekatan yang digunakan adalah crisp, dengan pendekatan ini ada citra-citra yang relevan tetapi citra tersebut tidak diperoleh yang seharusnya dapat diperoleh. Pada penelitian ini diusulkan logika fuzzy sebagai pendekatan untuk merepresentasikan spasial warna pada sistem perolehan citra. Fungsi keanggotaan fuzzy yang diusulkan untuk memodelkan kedua puluh dua spasial warna Zoran adalah fungsi gaussian dua dimensi (2D). Kedua puluh dua spasial warna tersebut adalah : tengah, pinggir, tepi kiri, tepi kanan, tepi atas, tepi bawah, kiri atas, kiri bawah, kanan atas, kanan bawah, seperempat kiri atas, seperempat kiri bawah, seperempat kanan atas, seperempat kanan bawah, setengah kanan, setengah kiri, setengah atas, setengah bawah, horisontal, vertikal, diagonal menaik serong ke kanan, diagonal menurun serong ke kanan. Hasil uji coba memperlihatkan bahwa sistem ini berhasil memperbaiki pendekatan sebelumnya dalam merepresentasikan kueri spasial warna. Diharapkan rancangan sistem ini bisa memberikan kueri yang lebih alami kepada pengguna."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bobby Alexander Wiwaha
"Kanker payudara merupakan salah satu jenis kanker yang ganas, deteksi yang lebih awal akan membantu penyembuhan yang lebih baik. Terkait dengan penegakan diagnosis yang akurat pada kanker payudara, salah satu metode dalam bidang patologi adalah analisis imunohistokimia. Salah satu prosedur dalam analisis imunohistokimia adalah menghitung positifitas antigen yang dilakukan dengan menghitung prosentase sel positif dan negatif pada suatu paparan. Selama ini perhitungan positifitas pulasan masih dilakukan secara manual karena pengamatan morfologi imunohistokimia merupakan hal yang penting disamping keterbatasan perangkat bantu yang ada. Proses perhitungan secara manual membutuhkan waktu 5-10 menit dengan akurasi subjektif. Oleh sebab itu, pembuatan perangkat penentu positifitas antigen yang dapat melakukan penghitungan dengan cepat, objektif dan akurasi tinggi sangat penting untuk meningkatkan kualitas diagnosis dokter. Dalam rangka membangun perangkat penentu positifitas antigen tersebut salah satu modul yang harus dipecahkan adalah segmentasi, yaitu bagaimana cara memisahkan bagian citra yang berisi sel positif, negatif dan background. Terdapat dua pendekatan segmentasi yang dapat dilakukan, pertama pendekatan crisp yang diwakili double thresholding dan pendekatan fuzzy yang diwakili oleh fuzzy morphologi. Kinerja dari fuzzy morphologi dan double thresholding telah dibandingkan dalam melakukan segmentasi pulasan imunohistokimia pada citra sel positif kanker payudara. Secara keseluruhan hasil segmentasi dari fuzzy morphologi lebih baik daripada double thresholding kerena tingkat akurasi pendeteksian sel kankernya lebih tinggi dibandingkan dengan metode double thresholding.

Breast cancer is one type of malignant cancer and the preventif detection will help to get better cure. Related to an accurate diagnosis of breast cancer. One of the methods in pathology is immunohistochemistry analysis. One of the procedures in analyzing immunohistochemistry is by counting antigen which is done by counting the precentage of positive and negative cells in an image. So far the counting of positivity of the stain is still being done manually. It happens because the observation of the morphology of immunohistochemistry is important and because of the unsufficient equipment. The manual process of counting needs 5- 10 minutes with subjective acuracy. So the making of the equipment to determine the antigen positivity which can calculate fast, objectively, and with most accuracy is very important to improve the quality of the doctor?s diagnosis. In making the equipment to determine the antigen positivity, one of the moduls which has to be solved is segmentation; how to seperate the image which contains the positive and negative cells and background. There are two segmentation approaches which can be done. First is crisp approaches which is represented by double thresholding and the fuzzy approaches which is represented by the fuzzy morphology. The performance of the fuzzy morphology has been compared with the double thresholding in doing segmentation of the image of immunohistochemistry stain positive cells in breast cancer. The general result of the fuzzy morphology is better than the double thresholding because it can make more accurate detection than the double thresholding method."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Andi Rafiandi
"Penulisan skripsi yang dikerjakan penulis merupakan usulan konsep perbaikan sistem pengadaan material pada PT. X.
Sesuai dengan judul skripsi yang berjudul : ?Usulan konsep penyediaan material dengan menggunakan SAP RB?, maka penulis berupaya memberikan sumbangan pemikiran yang berupa usulan hasil analisa maupun buah pemikiran dari penulis.
Proses penulisan skripsi yang dilakukan oleh penulis mencakup studi terhadap PT.X sendiri, yang mana dalam study tersebut dilalcukan dengan studi literatur yang dalam hal ini termasuk study terhadap laporan, kertas kerja, dll, maupun study lapangan yang dalam hal ini termasuk wawancara, maupun terjun ke lapangan (ikut melihat sistem secara langsung).
Setelah dilakukan study terhadap PT. X sendiri maka penulis berupaya rnengadakan analisa analisa terhadap permasalahan yang melingkupi sistem yang ada tersebut.
Sesuai dengan judul skripsi yang mengetengahkan SAP R/3 sebagai alat bantu, maka penulis setelah rnengadakan analisa sistem lalu berupaya mengadakan pembedahan terhadap SAP R/3, yang kebetulan pada saat itu juga penulis termasuk sebagai tenaga pernbantu dalam proyek penerapan SAP R/3 pada PT. X.
Berdasarkan analisa perrnasalahan permasalahan yang telah dilalcukan dan pernbedahan terhadap SAP R/3 maka penulis berupaya memberikan solusi yang terbaik bagi permasalah permasalah sistem pengadaan material pada PT. X.

"
1996
S36651
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mario Hendracia
"Pada skripsi ini dibahas pemodelan dengan mengidentifikasi suatu kumpulan data masukan-keluaran suatu proses nonlinier data fluktuasi harga saham dan data Indeks Harga Saham Gabungan (IHSG) dalam bentuk model fuzzy Takagi-Sugeno. Struktur model Nonlinear Auto Regressif (NAR) divariasikan time delaynya sebanyak tiga kali, yaitu t=1, t=3, dan t=5 digunakan sebagai model sistem nonlinear. Algoritma Subtractive Clustering digunakan untuk mengelompokkan data masukan-keluaran menjadi beberapa cluster berdasarkan kesamaan linearitas, dimana setiap cluster mewakili suatu aturan bagian premis model fuzzy Takagi-Sugeno. Parameter model fuzzy Takagi-Sugeno untuk setip aturan (cluster) diestimasi dengan menggunakan metode least-square untuk masing-masing cluster. Model fuzzy Takagi-Sugeno untuk data fluktuasi harga saham dan data IHSG menunjukkan ferforma yang paling baik dengan struktur NAR t=1. Model fuzzy Takagi-Sugeno untuk data fluktuasi harga saham yang didapat telah diuji dengan proses validasi silang dan hasilnya menunjukkan bahwa model fuzzy Takagi-Sugeno untuk data fluktuasi harga saham mampu menyamai karakteristik proses nonlinear data fluktuasi harga saham dengan tingkat Root Mean Square Error (RMSE) sebesar 16.3. Demikian pula dengan model fuzzy Takagi-sugeno untuk data IHSG, dengan tingkat RMSE sebesar 6.52. Terjadinya overfitting menunjukkan bahwa model fuzzy Takagi-Sugeno untuk data IHSG hanya dapat digunakan untuk peramalan jangka pendek (short-term forecasting)."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40133
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>