Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120186 dokumen yang sesuai dengan query
cover
Dawud Gede Wicaksono D.
"Skripsi ini dibuat untuk merancang perangkat lunak yang mampu mengenali nilai nominal uang kertas rupiah beserta keasliannya melalui proses pengolahan citra berbasiskan metode jaringan syaraf tiruan dengan algoritma backpropagation. Sistem pengenalan citra (image recognition) ini memperoleh kemampuan deteksi dengan cara belajar dari contoh (learning by examples).
Pola dari tiap uang kertas rupiah memiliki ciri yang unik yang membedakannya satu dengan yang lainnya, baik bentuk angka, jumlah angka nol, serta gambar latar belakangnya. Pola khas dari tiap jenis uang kertas inilah yang dikenali oleh perangkat lunak ini, sehingga mampu membedakan tidak hanya uang kertas rupiah (valid data) tapi juga uang kertas pecahan lain (unknown data).
Pencitraan uang kertas berasal dari dua sumber yakni citra tampak (visible image), yang berasal dari scanner 300 dpi, dan tak tampak (invisible image), yang menggunakan sinar ultraviolet (UV). Beberapa area tertentu diambil dari citra sebagai masukan identifikasi yang akan diolah melalui proses dijitalisasi sehingga dihasilkan reduksi citra hitam-putih (gray-scale) sebesar 8x7 pixel. Hal ini bertujuan selain mengurangi besar data pelatihan jaringan syaraf tiruan (JST) juga meningkatkan kemampuan identifikasi.
Metode backpropagation dipilih didasarkan atas masukan data relatif kecil dengan harapan waktu pendeteksian dapat dipersingkat. Hasil identifikasi mungkin tidak akan mendekati klasifikasi, tetapi akan didekati dengan persentase kesalahan sekecil mungkin. Jumlah total data sebanyak 76 set, dimana 25 diantaranya digunakan untuk melatih JST, dan sisanya sebanyak 51 set digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali dengan tingkat akurasi hingga sebesar 92% bervariasi tergantung dari jumlah set data pelatihan yang dilakukan. Metode yang diterapkan dapat digunakan untuk mengenali uang kertas pecahan rupiah.

This paper is written to design a software that capable to recognize the nominal value of rupiah banknote with its authenticity by means of image-processing technic based on artificial neural network with backpropagation algorithm. This image-processing technic has its recognition ability from learning-by-examples process.
Each rupiah banknote has its unique characteristic which distinguish the banknote with one another, such as numeral shape, amount of zeroes, and its background image. The software then uses this banknote’s unique pattern to recognize not only for valid currency, but also for unknown currency.
The banknote imaging process itself came from two sources, visible image—taken from a 300dpis scanner, and unvisible image—taken from a UV. Some certain areas are taken from the image as identification source that will be processed by some digitalization until these areas become an 8x7 pixels gray-scale image. This is intented to reduce the data size for the artificial neural network training process, thus increase the identification ability.
Backpropagation method is chosen based on its input data which is relatively small, hoping that the detection time can be decreased. The identification result might not get closer with the classification result, but will get approached with as small error as possible. The total amount of data are 76 sets, where 25 of them are used to train the artificial neural network, and the rest of them are used to test the neural network. Simulation result shows that the sistem is capable to identify up to 92% of accuracy, depends on amount of train-sets data. This method can be used to identify the rupiahs banknote authenticity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40552
UI - Skripsi Open  Universitas Indonesia Library
cover
Ridzky Arya Pradana
"Dalam skripsi ini dirancang suatu perangkat lunak yang dapat mengidentifikasi tidak hanya nilai nominal tetapi juga keaslian dari mata uang kertas rupiah melalui proses image processing dengan menggunakan Hidden Markov Model. Algoritma image recognition digunakan untuk mengekstraksi pola unik yang terdapat di setiap mata uang dan digunakan mengidentifikasi keaslian menggunakan kamera dengan sinar UV. Sedangkan pola gambar dari nilai nominal dari setiap mata uang juga diambil menggunakan scanner.
Setelah dilakukan image pre-processing, kedua pola ini digunakan sebagai data pelatihan dan disimpan dalam database bernama codebook menggunakan kuantisasi vektor. Terdapat 10 buah sampel data yang digunakan sebagai pelatihan dari setiap mata uang mulai dari Rp1000, Rp5000, Rp10.000, Rp20.000, Rp50000 dan Rp100.000. Kedua pola mata uang akan diidentifikasi menggunakan Hidden Markov Model melalui program simulasi.
Analisis menunjukkan variasi ukuran codebook, jumlah training, dan tingkat intensitas berpengaruh terhadap akurasi dari perangkat lunak. Berdasarkan hasil uji coba yang dilakukan didapatkan bahwa tingkat akurasi perangkat lunak mencapai 100 % pada ukuran codebook 256 bit dan jumlah pelatihan sebanyak 10 kali. Peningkatan ukuran codebook memperlambat waktu komputasi dari perangkat lunak.

In this final project, a software for rupiah bank notes nominal and authenticity identification is developed, using image processing technique and Hidden Markov Model. An image recognition algorithm is applied to extract the unique pattern of each bank note and used to identify the originality using a camera with UV lighting. The image of nominal value of each bank note is also retrieved using a scanner.
After image pre-processing, these two patterns are used as training data and stored in a database called codebook using vector quantization. There are 10 samples taken as training data for each bank note ranged from 1000, 5000, 10000, 20000, 50000 and 100000 rupiahs. Both patterns of a bank note will be recognized using Hidden Markov Model, in a simulation programme.
Result analysis shows codebook size variation, number of training, and the input image intensity influence the identification accuracy. Having this analysis result, the recognition accuracy level reaches 100 % based on 256 codebook size for 10 training test. The analysis also shows that the increment of codebook size will also increase the computing time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40388
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutapea, Martin Breshney
"Pada Skripsi ini direkayasa sistem identifikasi tanda tangan menggunakan jaringan syaraf tiruan dengan berbasis perangkat pemrograman MATLAB. Sistem ini mengenali citra tanda tangan seperti atau bahkan lebih baik dari daya persepsi manusia dibutuhkan perangkat pemrograman dengan kemampuan manipulasi numerik yang cepat dan akurat karena citra dalam format dijital direpresentasi dalam bentuk matriks angka. Belakangan ini tersedia perangkat pemrograman yang mampu memenuhi persaratan tersebut yaitu MATLAB (Mathematic Laboratory). Perangkat pemrograman ini sangat luas penggunaannya karena kemampuan manipulasi numeriknya yang baik dan kesederhanaan sistemnya. Pengambilan citra, pengolahan citra, pembentukan jaringan dan pelatihan jaringan dilakukan berbasis perangkat pemrograman MATLAB. Diharapkan sistem ini dapat bekerja dengan baik mengenali citra tanda tangan asli dan palsu yang dimasukan sebagai citra pelatih dan penguji jaringan sayaraf tiruan.

This Thesis create a signature recognition system using artificial neural network based MATLAB programming platform. Image aquisition, image extraction, image processing, network implementation and network training conducted based on MATLAB programming platform. The signature recognition system that could recognize the signature image as good as or better that human description ability required a programming platform with fast and acurate numerical manipulation process because of an image in digital form was represented by a matrix of number. Lately, a programming platform that fit the requirement is availabe which is MATLAB (Mathematic Laboratory). This programming platform has a extensive utilization because of its fine numerical manipulation ability and its system modesty. The system is expected to be able to perform well on identifying and distinguish original signature iamge and its forgery that feed to the artificial neural network as image trainer and image tester."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Geraldi Oktio Dela Rosa
"Secara teoritis, biometrik dapat digunakan untuk mengidentifikasi dan memverifikasi suatu individu. Iris mata merupakan salah satu instrumen biometric yang handal, karena keunikan dari dan kompleksitasnya.
Di dalam penelitian ini dirancang bangun program identifikasi iris mata menggunakan metode Jaringan Syaraf Tiruan (JST). Citra mata dijital yang akan diidentifikasi pertama-tama dilakukan pra-pengolahan terlebih dahulu. Proses ini memisahkan bagian iris dari citra mata menggunakan metode morphologi, yaitu close, erosi dan dilasi. Selanjutnya, citra disegmentasi untuk memisahkan citra iris berbentuk lingkaran dalam koordinat x-y menjadi format polar r-θ berbentuk persegi panjang. Citra polar kemudian diekstrasi untuk mendapatkan nilai karakteristik rata-ratanya dalam bentuk matriks 40 x 1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 10 layer tersembunyi, 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 80 citra iris, baik mata kiri maupun kanan, proses identifikasi mencapai tingkat akurasi rata-rata sebesar 87% untuk 5 buah input citra dengan 20 kali uji coba.

Theorically, biometric can be used to identify dan verify an individu. Iris is one of biometric identifier that highly acceptable because of its uniqueness and complexity.
The objective of this research is to identifiy an iris using Artificial Neural Network (ANN) method. First, the digital infrared image of eye will be preprocessed which separate the iris from the eye using morphology technique, such as closing, erosion, and dilation. The iris is then transformed from x-y dimension into r-θ polar image, which convert the circle shape into rectangle one. The image was then extracted in order to get the average value of its intensities and saved in 40 x 1 matrix size. These values will be trained in the ANN and inserted into a database to be used as a comparator in identification process. The ANN consisted of 10 hidden layer, 1 output layer, and activation functions of tansig and purelin, respectively.
Using 80 images as training data, the identification accuracy reached 87 % for 5 images and 20 times of test for left side and right side eyes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52158
UI - Skripsi Open  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
Sitinjak, Hermanto
"Suara denyut jantung memiliki pola khusus yang bersesuaian dengan kondisi jantung seseorang. Jantung yang tidak normal akan menimbulkan suara khas yang disebut murmur. Murmur disebabkan oleh berbagai hal yang menunjukkan kondisi jantung seseorang. Melalui Phonocardiogram (PCG) dapat dilihat gelombang sinyal denyut jantung seseorang. Spektrum denyut jantung abnormal memiliki pola spektrum yang khas. Sehingga melalui pola spektrum tersebut dapat diketahui kelainan jantung apa yang diderita oleh seseorang. Penelitian ini akan membuat suatu program simulasi yang akan mengenali tiga jenis kelainan jantung. Program simulasi ini menggunakan metode Jaringan Syaraf Tiruan dalam mengidentifikasi ketiga jenis kelainan jantung tersebut. Data yang akan digunakan sebagai database yaitu berupa sampel suara denyut jantung dengan format .wav, mono. Metode pelatihan Jaringan Syaraf Tiruan yang dibuat ini menggunakan fungsi traingdx yang terdapat pada Neural Network Toolbox MATLABTM. Adapun penggunaan fungsi traingdx ini karena waktu pelatihannya lebih cepat. Berdasarkan hasil pengujian pengenalan beberapa sampel kelainan jantung diperoleh akurasi rata-rata sebesar 82.2% dalam mengenali tiga jenis kelainan jantung tersebut.

Heartbeat has a unique pattern which corresponding to heart condition. Abnormal heart has a unique sounds which called murmurs. An murmur can be caused by something that indicates heart condition. It can be shown as a signal waveform of heartbeats by Phonocardiogram (PCG). Abnormal heartbeat has a unique spectral pattern. So with that spectral pattern it can be identify what kind of murmur types. This research make a simulation program which will identify 3 kinds of murmur heartbeats. This simulation program use Artificial Neural Network (ANN) to identify that murmurs. ANN database will use some murmurs heartbeats which record in .wav, mono fomat. Training method in this ANN use traingdx function which provided by Neural Network Toolbox MATLABTM. Traingdx function is a faster training method. This simulation program has 82.2% accuracy to detect 3 kinds of heartbeat murmur."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51434
UI - Skripsi Open  Universitas Indonesia Library
cover
Fajar Alya RahmanFajar Alya Rahman
"[ABSTRAK
Peramalan beban listrik memegang peranan yang sangat penting bagi efisiensi dan
kinerja dari PLN. Berbagai jenis metode dipakai untuk mendapatkan hasil peramalan beban yang akurat agar daya yang dikirimkan sesuai dengan kebutuhan
listrik dari konsumen. Skripsi ini membahas peramalan beban jangka pendek satu minggu ke depan dengan menggunakan Jaringan Syaraf Tiruan (JST). Peramalan
beban jangka pendek sangat dipengaruhi oleh faktor-faktor cuaca, yang dalam hal ini menjadi masukan JST, yaitu : Suhu, Kelembaban, Tekanan udara, dan
Kecepatan angin. Data yang digunakan untuk pembelajaran adalah data sebenarnya sepanjang tahun 2011. Arsitektur yang digunakan adalah feed-forward
dan algoritma yang dipakai adalah algoritma backpropagation. Berdasarkan hasil
didapatkan nilai MAPE terbaik sebesar 1.8 % dan untuk 10 kali running sebesar 2.65 % sehingga berada di bawah ambang kesalahan peramalan.
ABSTRAK
Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit., Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit.]"
Fakultas Teknik Universitas Indonesia, 2012
S54227
UI - Skripsi Open  Universitas Indonesia Library
cover
Arthania Retno Praida
"Untuk mengenali penyakit kanker sel darah putih (leukemia) dewasa ini masih dilakukan proses konvensional yang memakan waktu cukup lama dalam proses pengenalannya. Tugas akhir ini bertujuan untuk mengenali penyakit leukemia dari citra darah dengan menerapkan teknik pengolahan citra dan metode jaringan syaraf tiruan. Pada proses pengenalan penyakit ini, sistem yang sudah mengakuisisi citra darah akan melakukan proses cropping, resizing, dan membuat citra tersebut menjadi blok-blok matriks berukuran 4_4. Kemudian citra dalam format RGB dikonversikan ke dalam model warna HSV agar memiliki ruang warna yang lebih natural.
Untuk mendapatkan fitur warna salah satu elemen warna yakni Hue akan diekstraksi untuk mendapatkan matriks nilai karakteristiknya. Nilai karakteristik hasil ekstraksi fitur warna tersebut kemudian akan dilatih oleh jaringan syaraf tiruan dan dimasukkan ke dalam database. Jaringan syaraf tiruan terdiri atas 3 layer input, 3 layer tersembunyi dan 1 layer keluaran. Dari hasil uji coba, diperoleh tingkat akurasi rata - rata sebesar 83.33% menggunakan 3 input untuk setiap jenis penyakit leukemia dan 20 kali pelatihan jaringan syaraf tiruan.

Recognize the white blood cell cancer disease (leukemia) identification today, still use conventional method and time consuming. The Objective of this research is to identify leukemia disease from blood image using image processing technique and artificial neural network. In this identification disease process, the system which has made acquisition of the blood image will process the cropping, resizing and divide the image into 4 _ 4 matrix blocks. Then the image in RGB format is converted to HSV color model in order to have a more natural color.
In order to acquire color feature, one of the element which is Hue will be extracted to get characteristic value of the matrix. The characteristic value from the extracted color feature will then be trained by artificial neural network and inserted into the database. The artificial neural network consisted of 3 input layer, 3 hidden layer and 1 output layer. From the test result, we acquire an average level of accuracy of 83.33% using 3 inputs for every types of leukemia and 20 times of artificial neural network training.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S48409
UI - Skripsi Open  Universitas Indonesia Library
cover
Hans
"[Dewasa ini, teknologi berkembang dengan sangat pesat, salah satu contoh teknologi yang sedang marak beberapa tahun belakangan ini adalah 3D face recognition. Teknologi ini menggabungkan data biometrik berupa wajah orang yang diambil dari beberapa sudut (horizontal dan vertikal) dan jaringan saraf tiruan. Untuk memperbaiki tingkat rekognisi yang rendah pada saat menggunakan data crisp, maka digunakanlah metode fuzzy. Percobaan akan dilakukan sebanyak tiga kali karena terdapat tiga cluster yang masing-masing cluster terdiri dari beberapa set orang. Pertama-tama, data akan diolah secara bertahap pada fase fuzzification dimulai dari parameter ekspresi, orang, dan sudut. Tahapan selanjutnya adalah membuat referensi pada fase fuzzy manifold untuk kemudian digunakan pada fase fuzzy nearest distance. Pada fase fuzzy nearest distance akan dicari jarak terpendek dari data testing dengan referensi yang sudah ada. Hasil keluaran dari sistem ini adalah kombinasi sudut horizontal dan vertikal dari tiap-tiap cluster yang nantinya akan dimasukkan kedalam Jaringan Saraf Tiruan (JST) dengan lapis tersembunyi berstruktur hemisfer untuk mendapatkan tingkat rekognisi. Secara keseluruhan rata-rata tingkat rekognisi setiap cluster sudah bisa mencapai 80%. Hal ini menunjukkan sistem sudah cukup optimal dalam mengenali pola wajah yang ada.
;The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
;The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
, The development of technology is growing rapidly, one of the examples of the technology that is emerging in recent years is 3D face recognition. This technology combines biometric data in form of faces which are taken from several angles (combination of horizontal and vertical angles) and artificial neural network. In order to improve the low recognition rate from crisp data, fuzzy method is used. The experiment will be performed three times because there are three cluster which are consist of several set of person. Firstly, the data will be processed step by step in fuzzification phase starting from the level of expression continued with the level of face and lastly is the level of person. With the use fuzzification, the crisp data can be converted into fuzzy. The next step is to make references in fuzzy manifold phase in order to be used in fuzzy nearest distance phase. In fuzzy nearest distance phase, the shortest distance between the testing data the references will be processed in artificial neural network with hemispheric structured hidden layer. Generally, the average of the all recognition rate can reach up to 80% which means that the system can recognize the face pattern quite good.
]"
Fakultas Teknik Universitas Indonesia, 2015
S62379
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>