Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32105 dokumen yang sesuai dengan query
cover
Nurul Hikmah
"Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS."
2008
S40478
UI - Skripsi Open  Universitas Indonesia Library
cover
Dwi Kris Setianto
"Tugas akhir ini dilakukan sebagai penelitian untuk menganalisa proses pengenalan iris mata manusia dengan teknik pengolahan citra menggunakan metode adaptive neuro-fuzzy inference system (ANFIS). Hal ini didasarkan pada teori bahwa setiap iris mata manusia mempunyai bagian-bagian yang unik dan berbeda antara iris yang satu dengan yang lain. Data iris yang digunakan dalam penulisan tugas akhir ini diambil dari http://pesona.mmu.edu.my/~ccteo/. Data yang didapat sudah dalam grayscale dengan demikian dari data tersebut sudah dapat diolah dengan pengolahan selanjutnya dengan menentukan region of interest, mengubah koordinat citra dari koordinat kartesian menjadi koordinat polar, mengekstrak citra menjadi 3 bagian dan membuat blok-blok dari matriks tersebut, kemudian mengkodekan dengan filter wavelet. Dari hasil pengkodean ini didapat tiga buah parameter yaitu matriks diagonal, matriks vertikal, dan matriks horisontal. Dari ketiga parameter ini diambil nilai rata-ratanya dan hasilnya digunakan untuk pembentukan database yang kemudian digunakan untuk proses pelatihan, pengujian, dan pengecekan pada adaptive neuro-fuzzy inference system dengan menggunakan fungsi keanggotaan gaussian dan metode subtractive clustering. Hasil yang diadapat dari metode ini untuk citra mata yang telah dilatih sebesar 90% sedangkan untuk data uji atau citra yang tidak dilatih sebesar 25%.

This paper was made for studying identification proccess of human iris with image processing using adaptive neuro-fuzzy inference system (ANFIS) methode. The study based on the theory that every human iris have unique parts. Data that used in this paper taken from http://pesona.mmu.edu.my/~ccteo/. Data format in grayscale level therefore this data could be proccess with the further processing decisively region of interest, transform from rectangular coordinate to polar coordinate, extracted the image to 3 parts and made blocs from this matrix, afterwards encode the matrix using wavelet filter. From the results of this coding was gotten three parameters that is the diagonal matrix, the vertical matrix, and the horizontal matrix. From the three parameters was taken average value and results was used for database formation, afterwards was used for training process, testing, and checking in adaptive neuro-fuzzy inference system used the function of the gaussian membership and subtractive clustering methode. The result for his method 90% for image that was trained and 25% for test data or image that was not trained."
2008
S40591
UI - Skripsi Open  Universitas Indonesia Library
cover
Antonius Prasetyo Harianto
"Sejak diperkenalkan pertama kali pads tahun 1965 oleh Zadeh, teknolobi logika fuzzy telah mengalami perkembangan yang pesat di berbagai bidang disiplin ilmu. Pada saat ini berbagai aplikasi elektronika yang menggunakan kontroler logika fuzzy banyak diperkenalkan. Kontroler logika fuzzy memiliki keuntungan di mana sejumlah pengetahuan pakar dalam operasional dapat diterapkan dalam aplikasi. Namun demikian, untuk mendesain suatu kontroler logika fuzzy dibutuhkan waktu yang lama, karena semakin banyak variabel yang diperhitungkan, akan menambah jumlah atumn yang ada. Untuk itu, kemudian dikembangkan metode swa-talc dari aturan fuzzy dengan menggunakan algoritma belajar pads neural network, yang disebut "neurofuzzy".
Pada tulisan ini, metode belajar yang digunakan pada aturan fuzzy dalam pengambilan keputusan adalah metode descent. Berdasarkan data masukan dan keluaran yang dikumpulkan oleh pakar, aturan pengambilan keputusan yang menyatakan hubungan masukan dan keluaran dari data dihasilkan secara otomatis dengan menggunakan metode tersebut. Beberapa contoh hasil simulasi dari sistem dengan menggunakan komputer akan ditunjukkan guna menjelaskan secara lebih baik kelebihan yang dimiliki kontroler dengan metode ini bila dibandingkan dengan sistem yang tidak menggunakan kontroler ini."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38945
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Sekarsari
"Pada tesis ini dibahas tentang simulasi dan perancangan pengendalian sistem multivariabel Coupled Tank Apparatus dengan menggunakan Neural Network model Direct Invers Control. Model sistem yang bersifat non linier akan dilinierisasi sehingga diperoleh fungsi alih yang mengandung persamaan karakteristik yang menyerupai sistem linier orde dua yang berada dalam keadaan over damped akan selalu stabil. Pengurangan interaksi (kopling) yang terjadi pada sistem multivariabel Coupled Tank Apparatus dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrik. Perancangan dan simulasi sistem pengendalian Neural Network model Direct Invers Control menggunakan program Matlab Versi 5.3.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivatif serta sistem kendali logika Fuzzy menghasilkan tanggapan respon untuk mencapai keadaan steady state (setting time) pada Neural Network model Direct Invers Control lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PI, PID, dan Fuzzy.
Dalam hal ini, data parameter sistem untuk simulasi diperoleh dari hasil penelitian dan percobaan di Laboratorium Fakultas Teknik Universitas Indonesia.

In this thesis, a study on simulation and design of a multivariabel Control of Coupled Tank Apparatus Systems is presented. A Neural Network Controller based on a Direct Invers Control is applied. The linierized model of the Coupled Tank Apparatus Systems appears to be a stable second order transfer function with an over damped characteristic. A Decoupling Compensator is designed using Relative Gain Matrix Method of Bristol. The Simulation and control is implemented using Matlab 5.3.1 on apersonal computer. For comparison a PID controller and a Fuzzy Logic Controller are also implemented. It is found that NN Direct Invers Control shows a better performance than the other control method in terms of speed response.
All data for experiment and equipment used are done in the Control Laboratory, Dept of Electrical Engineering, Faculty of Technology University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8480
UI - Tesis Membership  Universitas Indonesia Library
cover
Indah Agustien Siradjuddin
"Masalah yang biasa terjadi dalam pembuatan sistem pengenalan wajah adalah jumlah dimensi yang terlalu besar untuk diproses ke dalam classifier, sehingga biaya komputasi yang dibutuhkanpun akan semakin besar pula. Penelitian berikut mencoba untuk mereduksi dimensi dalam ruang spatial akan tetapi dari hasil reduksi dimensi ini tidak membuat proses ekstraksi fitur kehilangan informasi penting yang mengakibatkan penurunan akurasi pengenalan.
Reduksi dimensi dalam ruang spatial ini didapatkan dengan cara membangkitkan sejumlah garis pada data citra secara acak. Ada dua metode dalam membangkitan garis yaitu Fitur Garis Acak (FGA) dan Template Fitur Garis Acak (TFGA). Pada FGA, sejumlah garis dibangkitkan pada seluruh data citra secara acak. Sedangkan TFGA, sejumlah garis dibangkitkan hanya satu kali saja dan himpunan garis ini yang akan digunakan untuk membangkitkan garis pada data citra yang lain. Dari masing-masing garis ini dibangkitkan sejumlah spatial window. Vektor representasi citra didapatkan dari rata-rata intensitas yang terdapat pada spatial window tersebut. Vektor representasi citra ini akan dijadikan fitur untuk classifier. Classifier yang digunakan adalah k-nearest neighborhod dan backpropagation sebagai pembanding.
Dari hasil percobaan menggunakan database weizmann, didapatkan bahwa pengenalan akan lebih stabil jika metode untuk membangkitkan garis adalah TFGA. Selain stabil dengan metode TFGA ini akurasi pengenalan lebih baik dibandingkan dengan metode FGA pada jumlah garis yang sama. Pada jumlah garis yang terkecil dengan menggunakan classifier k-nearest neighborhod, rata-rata akurasi pengenalan metode FGA adalah 46.67% sedangkan dengan TFGA akurasi pengenalan adalah 57.14%. Dengan classifier pembanding backpropagation dan menggunakan metode TFGA didapatkan rata-rata akurasi pengenalan 78.29%. Secara umum dari keseluruhan metode semakin bertambah jumlah garis maka semakin meningkat pula tingkat akurasi pengenalan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T529
UI - Tesis Membership  Universitas Indonesia Library
cover
Irwan Haryanto
"Skripsi ini menjelaskan suatu metode deteksi kecepatan pengelasan yang bisa diaplikasikan untuk simulator pengelasan menggunakan augmented reality. Dalam proses pengelasan, faktor kecepatan pengelasan menjadi sangat penting karena merupakan salah satu faktor yang menentukan bagus tidak nya kualitas pengelasan. Welding simulator ini nantinya bisa digunakan sebagai bentuk pelatihan pengelasan dengan biaya yang relatif murah. Metode ini menggunakan software ARToolkit,OpenGL library dan Autodesk 3ds Max dalam pembuatannya. Dalam perhitungannya, metode ini menggunakan algoritma perbedaan koordinat dalam satuan waktu yang diambil dari besarnya frame per second (FPS) dari sebuah kamera. Setelah metode ini berhasil dibuat, data pengukuran diambil untuk mendapatkan seberapa tepat dan berapa kesalahan (error) pendeteksian kecepatan pada simulator dari kecepatan yang yang sebenarnya dengan parameter tingkat intensitas cahaya yang berbeda. Analisis dilakukan dan didapatkan nilai kesalahan yang tidak terlalu besar sehingga metode berhasil dibuat dan kedepannya pengembangan lebih lanjut bisa dilakukan untuk membuat fitur-fitur yang lebih canggih.

This paper explain about travel angle detection that able to use for welding simulator using augmented reality. Travel speed is one of important parameter that able to influence the welding quality. In the future, this simulator can be used by students who want to join welder training with low cost. This method used ARToolkit, OpenGL library and Autodesk 3ds Max software for build the simulator. The travel speed detection used distance of the coordinat per time unit that included inside of frame per second (FPS) in camera specification. After this method built successfully, data of speed detection was analized for how accurate and how many error from speed detection to actual speed with different lighting condition. The speed detection error was not far away from the actual speed, so this simulator can be development more to get more important feature on welding process in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59820
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinar Ayu Rizkiya
"ABSTRAK

Skripsi ini membahas tentang simulasi sistem untuk mendeteksi pejalan kaki. Dikarenakan hak pejalan kaki yang masih dipandang sebelah mata, maka tidak pernah luput dari kejadian yang tidak diinginkan seperti kecelakaan. Penelitian skripsi ini bertujuan agar mengetahui bagaimana kinerja sistem untuk mendeteksi pejalan kaki. Simulasi ini memanfaatkan aplikasi MATLAB sebagai hasil output-nya. Dengan menggabungkan tiga metode sebagai acuannya yaitu Background Subtraction, Histogram of Oriented Gradient (HOG) dan Local Binary Pattern (LBP), memberikan output dimana dapat mendeteksi pejalan kaki. Vision.PeopleDetector digunakan untuk mendeteksi pejalan kaki secara tegak dan GetMapping untuk LBP.

Dari sistem yang dibuat dilakukan analisis berdasarkan waktu dan akurasi deteksi dengan membandingkan empat metode, yaitu HOG, Background Subtraction-HOG, HOG-LBP dan Background Subtraction-HOG-LBP. Hasilnya adalah metode gabungan Background Subtraction-HOG-LBP tidak sebaik metode yang lain. Waktu eksekusi selama 255,41 second. Akurasi 10 fps sebesar 59,5 % dan 20 fps sebesar 51%. Akurasi resolusi sebesar 640x480 42% dan 480x320 sebesar 44%.


ABSTRACT

This final assignment discusses about system simulation for pedestrian detection. Because of the rights of pedestrian who are still underestimated, then never escape from undesirable events such as accident. This research aims to find out how the system works to detect pedestrian. This simulation use MATLAB software as output. Pedestrian detection simulation combine three methods, there are Background Subtraction, Histogram of Oriented Gradient (HOG) and Local Binary Pattern (LBP). Vision.PeopleDetector used to detect pedestrian in an upright and GetMapping for LBP.

From the system, you can do analysis time and accuracy by comparing four methods, they are HOG, Background Subtraction-HOG, HOG-LBP and Background subtraction-HOG-LBP. The result is method of Background Subtraction-HOG-LBP is not as good as other methods. Elapsed time is 255,41 seconds. Resolution accuracy is 42% for 640x480 and 44% for 480x320.

"
Fakultas Teknik Universitas Indonesia, 2015
S59858
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuli Herawati
"Kuantifikasi citra terhadap pengukuran resolusi spasial, umumnya menggunakan protokol standar yang diterbitkan oleh National Electrical Manufacturers Association (NEMA). Namun, metode ini memiliki keterbatasan pada metode fitting data yang dilakukan. Akurasi yang lebih baik diberikan oleh fungsi Gaussian. Selanjutnya, penentuan resolusi spasial seperti berdasarkan Point Spread Function (PSF) dapat dipengaruhi oleh keberadaan noise atau error dalam data yang dapat menurunkan kontras citra. Oleh karena itu, untuk menjamin akurasi kuantifikasi citra, dilakukan dengan memastikan error sekecil mungkin dan memiliki perkiraan yang dapat diandalkan tentang seberapa besar error tersebut. Penelitian ini ditujukan untuk menyelidiki bagaimana tingkat noise yang berbeda pada pengukuran Full Width at Half Maximum (FWHM) berdasarkan metode NEMA dan Gaussian mempengaruhi keakuratan sistem pencitraan. FWHM digunakan untuk mengkarakterisasi resolusi spasial berdasarkan profil PSF. Hasil yang diperoleh diharapkan dapat memberikan informasi pada fisikawan medis mengenai pengaruh error dari pengukuran FWHM dalam rangka optimasi layanan klinis di rumah sakit. Dalam penelitian ini, model error yang digunakan adalah kombinasi model error proporsional dan Fractional Standard Deviation (FSD). Hasil penelitian menunjukkan terdapat peningkatan relatif deviasi FWHM terhadap variasi FSD 1% hingga 5% pada bidang dua dimensi dan tiga dimensi berdasarkan metode NEMA dan Gaussian. Peningkatan ini menjelaskan bahwa semakin tinggi tingkat noise pada sistem pencitraan, maka akan semakin mempengaruhi pengukuran FWHM yang berdampak pada penurunan kontras citra. Selanjutnya, terdapat korelasi antara error pixel value dan error FWHM. Semakin tinggi persentase nilai error pixel value pada sistem pencitraan, maka akan semakin mempengaruhi peningkatan persentase nilai error pada pengukuran FWHM.

Image quantification of spatial resolution measurements, generally using standard protocols published by the National Electrical Manufacturers Association (NEMA). However, this method has limitations on the data fitting method performed. Better accuracy is given by Gaussian function. Furthermore, spatial resolution determination such as based on Point Spread Function (PSF) can be influenced by the presence of noise or errors in the data that can decrease image contrast. Therefore, to ensure the accuracy of image quantification, it is done by ensuring the slightest possible error and having a reliable estimate of how big the error is. This study is intended to investigate how different noise levels in Full Width at Half Maximum (FWHM) measurements based on NEMA and Gaussian methods affect the accuracy of imaging systems. The FWHM is used to characterize spatial resolution based on PSF profiles. The results are expected to provide information to medical physicists about the effect of error in FWHM measurement to optimize clinical services in hospitals. In this study, the error model used is a combination of the proportional error model and the Fractional Standard Deviation (FSD). The results showed that there was an increase in the relative deviation of FWHM to the FSD variation of 1% to 5% in two-dimensional and three-dimensional fields based on the NEMA and Gaussian methods. This increase explains that the higher the noise level in the imaging system, the more it affects the FWHM measurement which has an impact on the decrease in image contrast. Furthermore, there is a correlation between the pixel value error and the FWHM error. The higher the percentage of error pixel value in the imaging system, the more it will affect the increase of percentage error FWHM measurement."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Budi Haryanto
"Kualitas permukaan produk hasil proses pemesinan adalah salah satu parameter penting dalam proses manufaktur. Metode yang paling umum untuk mengukur nilai kekasaran permukaan adalah metode kontak mekanik antara pergerakan jarum dengan permukaan produk. Metode ini memiliki banyak kelemahan karena bisa merusak permukaan poduk dan cenderung lama. Untuk itu maka dikembangkan teknologi optik-elektrik yang mampu mengevaluasi kekasaran permukaan berdasarkan image hasil identifikasi kamera digital.
Penelitian ini bertujuan untuk mengidentifikasi fitur permukaan produk hasil pemesinan turning dan melakukan analisa korelasi dengan nilai kekasaran rata-ratanya (Ra). Material yang diuji adalah carbonsteel dengan diameter 20 mm dan panjang 100 mm sejumlah 10 sampel. Pengukuran kekasaran rata-rata (Ra) memakai stylus-profile meter. Identifikasi profil permukaan menggunakan kamera digital Canon EOS 350D yang terhubung pada mikroskop dengan perbesaran 100 kali. Pencahayaan yang digunakan adalah 10 buah LED warna putih dengan sudut pencahayaan sebesar 45°. Software yang digunakan untuk melakukan image processing adalah Matlab.
Hasil yang dicapai menunjukan adanya pola yang khas pada image berupa garis hitam dan putih yang bervariasi. Lebar garis putih, jarak antar garis putih dan grafik histogram warna menunjukan adanya korelasi dengan nilai kekasaran rata-ratanya.

Surface quality of machined-part is an important parameter in manufacturing process. Recently, measuring of surface roughness is commonly performed by mechanical contact between stylus and product surface. However, this method is not fast enough and can potentialy damage the product. Therefore, a different method, which is used here, relied on optic-electric relationship has been developed based on digital camera images.
The objective of current study is to identify the surface features of turned-parts machining and their correlation with respect to Roughness average (Ra) of stylus-profile meter. Ten samples of carbonsteel specimen, i.e., 100 mm length and 20 mm wide, are used during experiment. The identification of surface features is done by Canon EOS 350D digital camera and 100 times microscope magnification using 10 white LED and 45 degrees angle lighting. Sample images produced by the identification is then processed in Matlab.
Finally, a unique pattern, i.e., black and white line, can be observed on the processed images which indicates correlation with roughness average.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26186
UI - Tesis Open  Universitas Indonesia Library
cover
"Pengecekan segitiga dalam model 3 dimensi berfaset merupakan tahapan penting dalam deteksi gouging dan proses eliminasi. Untuk mengecek apakah permukaan model bersinggungan dengan alat, setiap segitiga pada model harus diperiksa. Akan tetapi, proses ini membutuhkan waktu yang lama. Segitiga-segitiga pada seluruh permukaan model harus diperiksa karena komputer tidak dapat melihat dan tidak mengetahui segitiga mana yang terletak di bawah posisi alat saat ini. Untuk mengurangi konsumsi waktu, pengecekan wilayah pada setiap posisi alat harus dapat dideteksi. Segitiga yang harus diperiksa adalah hanya yang berada pada wilayah tersebut. Cara yang dapat dilakukan untuk menetapkan wilayah adalah dengan menggunakan bucketing. Proses bucketing akan membuat beberapa bucket sebagai representasi dari beberapa wilayah dan setiap bucket akan diisi dengan segittiga yang terletak pada wilayah terkait. Terdapat beberapa metode bucketing. Paper ini akan menjelaskan semua metode yang telah diimplementasikan di dalam riset.

Abstract
Triangle?s checking in 3D faceted models is an essential step in gouging detection and elimination process. To check whether model surface intersects the tool, every triangle in the model has to be checked. Unfortunately, this process takes much time. Since the computer can?t see and doesn?t know which triangles located under the current tool position, then the triangles all over the surface model should be checked. To reduce the time, region checking at every position of tool has to be detected. Triangles that have to be checked are only in that region. The way of creating the region can be done by bucketing. Bucketing process will make some buckets as representation of regions and each bucket will be filled with triangles that lie in the corresponding region. There are several bucketing methods. This paper will explain all methods which have been implemented in the research. "
[Fakultas Ilmu Komputer Universitas Indonesia, Fakultas Teknik Universitas Indonesia], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>