Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 62391 dokumen yang sesuai dengan query
cover
Franky
"Indonesia menggunakan sistem tenaga listrik tiga fasa secara keseluruhan yang disalurkan ke konsumen baik dengan 2 kawat maupun 3 kawat fasa dan 1 kawat netral. Dalam jual-beli listrik yang dilakukan, diperlukan alat ukur energi listrik yaitu kWh-meter yang tersedia untuk satu fasa maupun tiga fasa. Pada sistem arus tiga fasa, daya yang disalurkan sama dengan jumlah daya pada masing-masing fasanya, sehingga hasil pengukuran dengan menggunakan kWh-meter satu fasa dan kWhmeter tiga fasa seharusnya sama. Tetapi pada kenyataanya, hasil pengukuran yang didapat tidak selalu sama.
Dalam sistem tenaga listrik, kinerja pembangkit dan saluran transmisi keadaannya cenderung tetap dalam operasinya. Sedangkan komponen beban merupakan komponen yang paling bersifat variatif atau nilainya berubah-ubah (impedansi dan faktor daya-nya). Perubahan yang terjadi ini juga berbeda-beda pada setiap fasanya, sehingga bukan hanya besar nilai beban yang berubah, tetapi juga menimbulkan ketidakseimbangan.
Skripsi ini menunjukkan bahwa pembebanan tidak seimbang akan membuat hasil pengukuran dengan kWh-meter tiga fasa bergerak lebih besar dari hasil pengukuran dengan kWh-meter satu fasa. Perubahan ini tergantung dari nilai ketidakseimbangan beban yang diberikan.
Karena beban bersifat variatif, maka faktor beban (dalam hal ini ketidakseimbangan beban) menjadi faktor dominan yang mempengaruhi perbedaan hasil pengukuran dengan menggunakan kWh-meter satu fasa dan kWh-meter tiga fasa.

Nationally, Indonesia use three phase electrical system that transmitted by two wires or three phase wire and a netral wire. In electrical transaction, we need energy measurement device called kWh-meter for one phase or three phase electrical circuit. Power in three phase electrical system are similar with sum of each phase power, so the measurement data using one phase or three phase kWh-meter are should be similar. But in fact, the measurement datas is not always similar.
In power systems, generator and transmission line operated in static setting. So, the most affecting component in power systems is load (dynamic set in impedance and power factor). This value of load change not only in a phase. But also in every phase, so it also change the unbalance load.
In this script, will be showed that unbalanced load will cause measurement datas by using three phase kWh-meter move higher that one phase kWh-meter. These changes depended by unbalanced load level given.
Due to variative load, power factor (unbalanced load) will be the main cause that affect difference of measurement datas by using one phase kWh-meter or three phase kWh-meter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40553
UI - Skripsi Open  Universitas Indonesia Library
cover
Hendro Anggoro
"Beban yang tidak seimbang dalam suatu sistem tenaga listrik merupakan suatu hal yang sering terjadi. Akibat kondisi tidak seimbang ini mengakibatkan munculnya arus netral pada trafo. Arus netral yang pada sistem pada umumnya bernilai jauh lebih kecil dari arus fasanya sedikit menimbulkan kerugian daya. Namun jika arus netral bernilai lebih besar dari arus fasa, maka pengaruh pada suplai daya sistem menjadi signifikan, suplai daya menjadi lebih besar dari suplai daya pada sistem yang seimbang. Tulisan ini mengambil studi kasus di Pabrik Semen Cibinong, Cilacap, yang merupakan suatu sistem tenaga listrik yang sebagian besar bebannya berupa motor. Dalam tulisan ini akan ditunjukan bahwa ketidak seimbangan beban pada pabrik ini memicu peningkatan suplai daya."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S39962
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghusaebi
"Skripsi ini membahas tentang upaya mengurangi harmonik pada sistem distribusi tiga fasa empat kawat dengan menggunakan transformator zigzag. Selain dapat mengurangi harmonik, transformator zigzag juga dapat mengurangi arus netral dan menaikkan faktor daya sistem distribusi. Percobaan dilakukan dengan menggunakan beban non linier dalam keadaan seimbang dan tidak seimbang.
Dari hasil percobaan yang dilakukan, penggunaan transformator zigzag pada sistem distribusi tiga fasa empat kawat dalam percobaan ini dapat mengurangi THD-i dengan persentase penurunan rata-rata sebesar 19.77%. Penggunaan transformator zigzag dalam percobaan ini dapat mengurangi arus kawat netral dengan persentase penurunan rata-rata sebesar 24.36%. Penggunaan transformator zigzag dalam percobaan ini juga dapat dapat menaikkan faktor daya sistem distribusi dengan kenaikan rata-rata sebesar 0.0466.

This focus of study is about the reduction of harmonics in the three-phase four-wire distribution power system using zigzag transformer. Not only can reduce harmonics, but also zigzag transformer can reduce neutral conductor current and distribution transformer loading percentage. This experiment use balanced and unbalanced non-linerar load.
The result of experimenent, zigzag transformer applying can reduce THD-i with the decrease percentage average is 19.77%. In this experiment, zigzag transformer applying can reduce neutral conductor current with the decrease percentage average is 24.36%. In this experiment, zigzag transformer applying can also increase power factor of the distribution system with the increase average is 0.0466.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59150
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dedy Widarta
"Peredaman level harmonik dengan menggunakan filter aklif tipe shunt dikhususkan untuk kompensasi arus harmonik pada frekuensi rendah Hal ini merupakan salah satu solusi yang tepa! pada sistem distribusi tenaga listrik karena pada industri dan fasilitas komersial. harmonik yang memiliki efek terbesar adalah komponen harmonik ke-5 dan harmonik ke-7. Kompensasi arus harmonik dengan menggunakan filter aktif tipe shunt dilakukan dengan menginjeksi arus harmonik dengan amplitudo yang sama tetapi berlawanan fasa dengan arus harmonik yang dibangkitkan oleh beban non-linier. Jadi setelah dilakukan kompensasi maka secara ideal hanya komponen arus fundamental yang eksis pada slstem distribusi tenaga listrik Pada tugas akhir skripsi ini disimulasikan penambahan filter aktif tipe shunt dan perubahan nilai filter induktif L Jerhadap suatu sistem distribusi tegangan rendah untuk melihat pengaruhnya terhadap arus dan spektrum harmonik pada sistem. Pengujian di/akukan dengan menggunakan perangkat lunak SIMCAD versi 4.1. Hasil simulasi ini menunjukkan bahwa penambahan filter aktlf tipe shunt akan menurunkan spektrum harmonik pad a sistem dan penurunan nilai filter induktif L cenderung meningkatkan kualitas kompensasi dari filter aktif tipe shunt."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40112
UI - Skripsi Membership  Universitas Indonesia Library
cover
Felix Yaman Kusuma
"Sustainable Development Goals (SDGs) poin sembilan adalah Industry, Innovation, and Infrastructure berkaitan dengan salah satu program pemerintah bahwa akan ada penambahan pembangkit listrik sampai dengan 41.000 MW dengan target elektrifikasi dalam kurun periode 2021 hingga 2030. Transformator adalah kunci utama dari sistem transmisi dan distribusi listrik. Transformator tipe kering jenis cast resin memiliki beberapa kelebihan, seperti: risiko kebakaran sangat kecil dan cocok untuk daerah yang lembab. Di sisi lain, kelangsungan operasi dari transformator perlu diperhatikan bagi industri, karena suhu ruang yang tinggi dan beban yang melebihi kapasitas dapat mengurangi umur transformator.
Tujuan penelitian ini untuk mengukur dan membandingkan prediksi umur transformator dengan kapasitas yang berbeda, antara lain: 800 kVA, 1174 kVA, 1250 kVA, 1700 kVA, 2500 kVA, dan 2750 kVA. Pengujian kenaikan suhu pada transformator terbagi menjadi beberapa jenis, yakni: pengukuran rugi-rugi daya tanpa beban dan beban penuh, suhu pada titik terpanas, dan resistansi kondisi dingin dan panas. Terdapat dua standar yang digunakan dalam perhitungan, yakni: IEC 60076-12:2008 dan IEEE Std C57.96-2013. Nilai pembebanan dimulai dari 0,1 p.u. hingga 1,0 p.u., di mana nilai tersebut merupakan pengukuran rugi-rugi daya saat kondisi tanpa beban dan beban penuh ketika tercapai kondisi saturasi suhu. Berdasarkan standar IEEE, nilai pembebanan optimal diperoleh mendekati 0,8 p.u. dengan menggunakan metode interpolasi linear diperoleh bahwa perkiraan umur pada tiap transformator adalah 104,66 tahun (800 kVA), 123,24 tahun (1174 kVA), 84,44 tahun (1250 kVA), 80,72 tahun (1700 kVA), 58,79 tahun (2500 kVA), dan 84,88 tahun (2750 kVA).

Sustainable Development Goals (SDGs) 9th goal is “Industry, Innovation, and Infrastructure” related to one of the government programs that there will be additional power plants up to 41,000 MW with electrification targets in the period 2021 to 2030. Transformers are the main key to the electricity transmission and distribution system. Cast resin dry-type transformers have several advantages, such as the risk of fire is very small and suitable for humid areas. On the other hand, the continuity of operation of the transformer needs to be considered for the industry, because high ambient temperatures and loads that exceed capacity can reduce the life of the transformer.
The purpose of this study is to measure and compare the life prediction of transformers with different capacities, including 800 kVA, 1174 kVA, 1250 kVA, 1700 kVA, 2500 kVA, and 2750 kVA. Testing the temperature rise in the transformer is divided into several types, namely: measurement of power loss without load and full load, temperature at the hottest spot, and resistance in cold and hot conditions. There are two standards used in the calculation, namely: IEC 60076-12:2008 and IEEE Std C57.96-2013. The loading value starts from 0.1 p.u. to 1.0 p.u., where the value is the measurement of power losses during no-load and full-load conditions when temperature saturation conditions are reached. Based on IEEE standards, the optimal loading value is obtained close to 0.8 p.u. By using the linear interpolation method, it is obtained that the estimated life of each transformer is 104.66 years (800 kVA), 123.24 years (1174 kVA), 84.44 years (1250 kVA), 80.72 years (1700 kVA), 58.79 years (2500 kVA), and 84.88 years (2750 kVA).
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachreza
"Permintaan yang melonjak akan kebutuhan tenaga listrik menimbulkan masalah pada penyaluran tenaga dalam usaha memberikan pelayanan yang baik kepada konsumen. Salah satu solusinya adalah penyalurkan tenaga listrik melalui saluran kabel bawah tanah (underground). Penanaman kabel secara langsung tentunya akan lebih murah dan kemampuan hantar dayanya juga akan lebih besar. Kemampuan hantar daya ini dibatasi oleh suhu maksimum yang masih dapat ditahan isolasi kabel. Kemampuan hantar daya ini berdampak pada rugi-rugi dari kabel itu sendiri. Untuk mendapatkan rugi-rugi kabel yang minim perlu diperhatikan kedalaman kabel dan kondisi tanah letak kabel ditanamkan, Oleh karena itu diperlukan kabel dengan isolasi yang dapat menahan suhu yang cukup tinggi."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40003
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bima Adinata Namara
"Kendaraan listrik menjadi semakin populer dalam beberapa tahun terakhir seiring dengan perkembangan teknologi canggih khususnya dibidang otomotif. Berdasarkan hasil riset Deloitte dan Foundary, jumlah kendaraan listrik di Indonesia pada tahun 2020 telah terdistribusi sebanyak 2176 unit yang mana jumlah ini naik secara signifikan menjadi 33461 unit pada tahun 2022. Hal ini menunjukkan adanya minat kepada masyarakat untuk membawa dampak positif menuju kendaraan yang lebih ramah lingkungan. Kenaikan jumlah kendaraan listrik juga mendorong peningkatan infrastruktur kelistrikan terutama stasiun pengisian daya yang dapat membawa pengaruh besar terhadap kestabilan sistem kelistrikan. Salah satu tantangan utama meningkatnya jumlah stasiun pengisian daya adalah perilaku masyarakat dalam melakukan pengisian daya pada kendaraan listrik yang tidak terkoordinasi sehingga dapat menimbulkan kekhawatiran baik itu bagi perusahaan utilitas maupun pemilik kendaraan listrik itu sendiri. Upaya yang dapat dilakukan untuk mengatasi hal tersebut yaitu dengan menerapkan konsep Vehicle-to-Grid (V2G) secara terjadwal sehingga pada penelitian ini akan membahas strategi manajemen beban puncak melalui penjadwalan pengisian daya dua arah pada kendaraan listrik yang akan dipasang di penyulang tertentu dengan mempertimbangkan pengaruh penetrasi PLTS atap. Eksperimen dilakukan menggunakan metode simulasi Quasi-Dynamic pada software DIgSILENT PowerFactory 2021 dengan meninjau beberapa parameter seperti jenis stasiun pengisian daya, kapasitas baterai, State of Charge (SoC), waktu pengisian atau pengosongan baterai, tingkat penetrasi PLTS atap, dan kondisi beban sehingga akan diperoleh data hasil simulasi dari berbagai skenario. Hasil penelitian menunjukkan bahwa implementasi teknologi Vehicle-to-Grid (V2G) secara terjadwal pada saat musim kemarau dapat memitigasi dampak negatif peningkatan beban puncak dan tentunya dapat meningkatkan stabilitas jaringan kelistrikan.

Electric vehicles have become increasingly popular in recent years, in line with the advancement of cutting-edge technology, particularly in the automotive field. According to research by Deloitte and Foundary, the number of electric vehicles in Indonesia in 2020 was distributed as much as 2176 units, a figure that significantly increased to 33461 units in 2022. This indicates the public's interest in making a positive impact towards more environmentally friendly vehicles. The rise in the number of electric vehicles also promotes the improvement of electrical infrastructure, especially charging stations, which can have a significant influence on the stability of the electrical system. One of the main challenges of the increasing number of charging stations is the uncoordinated behavior of the community in charging electric vehicles, which can cause concern both for utility companies and the owners of electric vehicles themselves. One effort that can be made to address this issue is by implementing the Vehicle-to-Grid (V2G) concept on a scheduled basis. Therefore, this research will discuss peak load management strategies through scheduled two-way charging at electric vehicles that will be installed in specific feeders, considering the impact of rooftop solar power penetration. Experiments were carried out using Quasi-Dynamic simulation method on DIgSILENT PowerFactory 2021 software by reviewing several parameters such as the type of charging station, battery capacity, State of Charge (SoC), battery charging or discharging time, rooftop solar penetration level, and residential load conditions. The research results show that the scheduled implementation of Vehicle-to-Grid (V2G) technology during the dry season can mitigate the negative impact of increasing peak loads and of course can increase the stability of the electricity network.
"
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Ronald Ferdinand
Depok: Fakultas Teknik Universitas Indonesia, 2003
S38840
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezki Zakaria
"Proyek FEED (Front End Engineering Design) Pembangunan Booster Pump Station Batang Heavy Oil di Rokan Hilir, Riau yang dilaksanakan oleh PT Solusi Energy Nusantara merupakan bagian dari Proyek Strategi Nasional National Capital Integrated Coastal Development (NCICD). Praktik keinsinyuran ini adalah mensimulasikan perancangan dan analisis sebuah sistem tenaga listrik dengan menggunakan software engineering ETAP (Electrical Transient Analysis Power) power station 19.5. ETAP mampu bekerja dalam keadaan offline untuk simulasi tenaga listrik dan online untuk pengelolaan data real-time dengan metode pendekatan studi aliran daya (load flow study). Metode pendekatan aliran daya yang akan digunakan dalam praktik keinsinyuran ini adalah metode Newton-Rhapson dengan faktor ketelitian 0,0001. Dari hasil analisis simulasi dan teori aliran daya, maka didapatkan nilai level tegangan dari peralatan listrik yang dihasilkan masih dalam batas yang diperbolehkan, yaitu ± 5%. Power supply dari PLN dengan hasil level tegangan, 20 kV Medium Voltage switchgear (100%); 6,6 kV Medium Voltage Switchgear (99,06%) dan 0,4 kV Low Voltage Switchgear (99,72%), sedangkan power supply dari EDG (Emergency Diesel Generator) diperoleh dengan hasil level tegangan 6,6 kV Medium Voltage switchgear (100%) dan 0,4 kV Low Voltage switchgear (99,3%). Praktik keinsinyuran dilaksanakan mulai dari pengumpulan data sampai dengan pembuatan laporan telah memenuhi aspek profesionalisme, KEI dan K3LL.

The FEED (Front End Engineering Design) Project for the Construction of the Batang Heavy Oil Booster Pump Station in Rokan Hilir, Riau implemented by PT Solusi Energy Nusantara is part of the National Capital Integrated Coastal Development (NCICD) National Strategy Project. This engineering practice is to simulate the design and analysis of an electrical power system using ETAP (Electrical Transient Analysis Power) power station 19.5 engineering software. ETAP is able to work offline for power simulation and online for real-time data management with the load flow study approach method. The power flow approach method that will be used in this engineering practice is the Newton-Rhapson method with an accuracy factor of 0.0001. From the results of simulation analysis and power flow theory, it is obtained that the voltage level value of the electrical equipment produced is still within the allowed limit, which is ± 5%. Power supply from PLN with voltage level results, 20 kV Medium Voltage switchgear (100%); 6.6 kV Medium Voltage Switchgear (99.06%) and 0.4 kV Low Voltage Switchgear (99.72%), while power supply from EDG (Emergency Diesel Generator) is obtained with voltage level results 6.6 kV Medium Voltage switchgear (100%) and 0.4 kV Low Voltage switchgear (99.3%). Engineering practices carried out from data collection to report writing have fulfilled aspects of professionalism, KEI and HSE.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Danang Ramadhianto
"Di dalam suatu sistem tenaga listrik terdapat suatu faktor yang dinamakan faktor rugi rugi atau penyusutan dari energi. Penyusutan ini dapat ditemui di berbagai tempat pada jaringan tenaga listrik, mulai dari pembangkitan, transmisi, sampai dengan kepada distribusi kepada konsumen.
Terdapat dua jenis penyusutan pada sistem tenaga listrik, yaitu penyusutan teknis dan non-teknis. Penyusutan teknis adalah penyusutan yang terjadi sebagai akibat adanya impedansi pada peralatan pembangkitan maupun peralatan penyaluran dalam transmisi dan distribusi sehingga terdapat daya yang hilang. Penyusutan secara non teknis adalah susut yang disebabkan oleh kesalahan dalam pembacaan alat ukur, kesalahan kalibrasi di alat ukur, dan kesalahan akibat pemakaian yang tidak sah (pencurian) atau kesalahan kesalahan yang bersifat administratif lainnya.
Penyusutan daya tidak mungkin dihindari karena pada peralatan tidak mungkin memiliki tingkat efisiensi 100%, namun yang perlu mendapatkan perhatian adalah apakah penyusutan yang terjadi di dalam batas kewajaran. Sebagian besar penyusutan yang ada berada pada jaringan distribusi. Hal ini disebabkan karena pada jaringan distribusi, tegangan yang dipakai berada dalam rentang tegangan menengah dan tegangan rendah. Dimana untuk tegangan menengah dan tegangan rendah, arus yang mengalir pada jaringan nilainya besar untuk nilai daya yang sama, sehingga penyusutan energi juga akan besar.

On power ystem there is a factor known as losses factor of energy. These losses could be found in several places all over power network, from the power plant, transmission system, until the network end in distribution system.
Actually, there are two kinds of losses on power system network, which are technical losses and non-technica losses. Technical losses is losses that happen not only as an effect of impedance on power plant utilities,but also as an effect of impedance on equipment that used in transmission and distribution. In other side, the non-technical losses is a losses that caused by the mistake tha occurred when reading the measurement equipment, the mistake of equipment calibration, and a mistake that caused by illegal user or other administrative mistakes.
We can not avoid energy losses, because the equipment that we used can not possible have 100% efficiency, but there is one thng that should become our primary concern is the losses that occur are still in normal level or not. Mostly the energy losses happen on distribution network. Because on distribution network, the rate of voltage that being used is located in middle voltage and low voltage range. As we know, on middle voltage and low voltage, the amount of current that flow in the cable increasing for the same power. In the simple word, it will cause te energy losses bigger than before.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40523
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>