Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 137344 dokumen yang sesuai dengan query
cover
Syarifah Dina Meutia
"Kanker leher rahim atau kanker serviks merupakan penyakit kanker yang paling banyak menyerang wanita di negara berkembang, termasuk Indonesia. Salah satu cara pencegahannya adalah dengan melakukan test Pap-Smear. Sel serviks hasil test Pap-Smear tersebut kemudian didiagnosa oleh dokter Patologi Anatomi. Namun dokter Patologi Anatomi tidak selalu ada di semua wilayah, terutama di daerah terpencil. Untuk memungkinkan diagnosa pasien di daerah terpencil yang jarang ditemukan dokter Patologi Anatomi, diperlukan suatu upaya untuk mengotomatiskan diagnosa terhadap hasil test Pap-Smear, sehingga dapat dilakukan diagnosa jarak jauh (telemedicine).
Penelitian ini bertujuan untuk melakukan diagnosa terhadap citra hasil test Pap-Smear, yaitu dengan menggunakan Algoritma Multiflaktal yang dikombinasi dengan Adaptive Multiple Thresholding sebagai metode segmentasi secara otomatis dan Jaringan Syaraf Tiruan menggunakan Learning Vector Quantization (LVQ) sebagai metode klasifikasi dengan nilai intensitas dari citra hasil segmentasi sebagai cirinya. Performa dari hasil segmentasi akhir, tingkat ketelitiannya sekitar 70%. Hasil klasifikasi dengan LVQ terhadap tujuh kelas tingkat pengenalannya masih di bawah 40%, sedangkan tingkat pengenalan terhadap dua kelas mampu mencapai sekitar 82%.

Cervix cancer is the most cancer disease that attact women in the developing country, include Indonesia. One of the way of its prevention is by a PapSmear test Cervix cells that resulted from Pap-Smear test then diagnosed by a Pathology of Anatomy doctor. But Pathology of Anatomy doctor is not always in all area. To enable diagnosa patient in purilieus which seldom be found Pathology of Anatomy doctor, needed an effort, so that can be conducted by long distance diagnosa (telemedicine).
This research aims to conduct diagnose the image result of Pap-Smear test, and keep involve Multifractal Algorithm which is combined with Adaptive Multiple Thresholding as segmentation method automatically, and Artiflcial Neural Network using Leaming Vector Quantization (LVQ) as clssification method with intensity value from segmentation image as its feature. The performance in segmentation and increasing quality result, the correctness about 70%. The result of classification using LVQ toward seven classes, its recognition is less than 40%, meanwhile the recognition rate of two classes about 82%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T26451
UI - Tesis Open  Universitas Indonesia Library
cover
Syarifah Dina Meutia
"Kanker leher rahim atau kanker serviks merupakan penyakit kanker yang paling banyak menyerang wanita di negara berkembang, termasuk Indonesia. Salah satu cara pencegahannya adalah dengan melakukan test Pap-Smear. Sel serviks hasil test Pap-Smear tersebut kemudian didiagnosa oleh dokter Patologi Anatomi. Namun dokter Patologi Anatomi tidak selalu ada di semua wilayah, terutama di daerah terpencil. Untuk memungkinkan diagnosa pasien di daerah terpencil yang jarang ditemukan dokter Patologi Anatomi, diperlukan suatu upaya untuk mengotomatiskan diagnosa terhadap hasil test Pap-Smear, sehingga dapat dilakukan diagnosa jarak jauh (telemedicine). Penelitian ini bertujuan untuk melakukan diagnosa terhadap citra hasil test Pap-Smear, yaitu dengan menggunakan Algoritma Multifraktal yang dikombinasi dengan Adaptive Multiple Thresholding sebagai metode segmentasi secara otomatis dan Jaringan Syaraf Tiruan menggunakan Learning Vector Quantization (LVQ) sebagai metode klasifikasi dengan nilai intensitas dari citra hasil segmentasi sebagai cirinya. Performa dari hasil segmentasi akhir, tingkat ketelitiannya sekitar 70%. Hasil klasifikasi dengan LVQ terhadap tujuh kelas tingkat pengenalannya masih di bawah 40%, sedangkan tingkat pengenalan terhadap dua kelas mampu mencapai sekitar 82%.

Cervix cancer is the most cancer disease that attact women in the developing country, include Indonesia. One of the way of its prevention is by a Pap-Smear test. Cervix cells that resulted from Pap-Smear test then diagnosed by a Pathology of Anatomy doctor. But Pathology of Anatomy doctor is not always in all area. To enable diagnosa patient in purilieus which seldom be found Pathology of Anatomy doctor, needed an effort, so that can be conducted by long distance diagnosa ( telemedicine). This research aims to conduct diagnose the image result of Pap-Smear test, and keep involve Multifractal Algorithm which is combined with Adaptive Multiple Thresholding as segmentation method automatically, and Artificial Neural Network using Learning Vector Quantization (LVQ) as clssification method with intensity value from segmentation image as its feature. The performance in segmentation and increasing quality result, the correctness about 70%. The result of classification using LVQ toward seven classes, its recognition is less than 40%, meanwhile the recognition rate of two classes about 82%."
Depok: Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Khairani Djahara
"ABSTRAK
Pemilihan prototype menggunakan single prototype memiliki kelemahan dimana daerah yang minor (distribusi datanya sedikit) belum dapat ter-cover dengan baik, sehingga dibutuhkan penggunaan multiple prototype agar data yang memiliki ketersebaran data yang tidak merata pada kelas yang sama dapat terwakilkan. Pada penelitian kali ini, akan diterapkan suatu metode incremental learning yang akan diintegrasikan dengan algoritma FNGLVQ. Metode incremental learning yang digunakan adalah metode random, statis dan dinamis. Metode random dilakukan dengan cara memilih prototype dari luar secara random dengan penetapan jumlah 2,5,10 dan 20 prototype perkelasnya; metode statis dengan memanfaatkan sifat keabuan dari nilai similaritas fuzzy yaitu menggunakan threshold di bawah nilai 0.5, 0.4, 0.3, 0.2 dan 0.1 sebagai kriteria pemasukan prototype sementara untuk metode dinamis juga menggunakan threshold yang diadaptasi dari penelitian (Xu Ye, 2012), namun dalam penelitian ini akan dilakukan penyesuaian mengikuti bentuk prototype yang digunakan yaitu dalam bentuk fuzzy. Dari keseluruhan metode incremental learning ini yang digunakan baik random, statis maupun dinamis, akurasi meningkat sebesar ±3 – 5% dari single prototype. Sementara untuk metode dinamis sendiri memiliki keunggulan di atas rata-rata dari metode random maupun statis baik dalam hal akurasi dan efisiensi jumlah prototype yaitu sebesar 94.78% dengan ±7 buah prototype pada uji data simulasi dengan menggunakan gaussian mixture models.
ABSTRACT
Selection of prototype using single have a weakness where minor area could not cover well and need multiple prototype for a solution. In this research, incremental learning method will be integrated to FNGLVQ algorithm. Incremental learning method will be used random, static and dynamic. Random method will be selection of prototype from outside system randomly with 2, 5, 10, 20 prototype each class; statis method using threshold based on grey area of fuzzy similarity characteristic with using value under 0.5, 0.4, 0.3, 0.2 and 0.1 as criteria of entering the prototype to the set prototype, while dynamic method using threshold that adaptation from (Xu Ye, 2012), but in this research will be change form of prototype from crisp to fuzzy. From all incremental learning method that used such as random, static and dynamic, accuracy increasing about 3 until 5 % from single prototype. While dynamic threshold have an average superior than random and static method in accuracy and
amount of prototype with 94.78% and ±7 prototypes on testing in simulation data using gaussian mixture models."
Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Indra Hermawan
"Tidur merupakan suatu kondisi istirahat alami yang dialami tubuh yang sangat penting bagi kesehatan. Dengan waktu tidur yang tercukupi maka kondisi tubuh akan selalu segar karena pada saat tidur tubuh kita melakukan regenerasi terhadap sel-sel tubuh yang telah rusak ataupun mati. Namun hal tersebut tidak akan tercapai apabila kualitas tidur tidak baik. Penelitian pengenai pengukuran kualitas tidur hingga kini masih dilakukan. Salah satunya adalah penelitian yang dilakukan tim peneliti dari Fakultas Ilmu Komputer, Universitas Indonesia.
Pengukuran kualitas tidur dilakukan dengan melakukan pengenalan tahapan tidur berdasarkan sinyal Elektrokardiogram (EKG). Karakteristik data yang overlaping dan distribusi data yang menyebar masih mejadi permasalahan utama pada pengenalan tahapan tidur. Dalam penelitian ini, dikembangkan sebuah algoritma Adaptive Multi Codebook Fuzzy Neuro Generalize Learning Vector Quantizatio (AMFNGLVQ) untuk mengatasi data yang overlaping dan distribusi yang menyebar. Berdasarkan hasil pengujian, metode yang diusulkan memiliki tingkat akurasi dan nilai kappa yang lebih baik. Berdasarkan hasil pengujian, metode yang diusulkan mampu memperbaiki tingkat pengenalan dengan kenaikan 2% hingga 3 % untuk data Mitra dan 0.5% hingga 1.5% untuk data MIT-BIH. Sedangkan untuk pengujian menggunakan seluruh data Mitra kenaikan rata-rata tingkat akurasi mencapai 3% hingga 7%.

Sleep is a natural experienced condition by the body for relaxation, that is very essential for health. If the sleep time has been adequate, the body condition will always be fresh because our body can regenerate the body cells to maintain health. However, that condition will not be achieved if the quality of our sleep is not good. Research on sleep quality measurement is still progressing. One study is by a team of researchers from the Faculty of Computer Science, University of Indonesia. In this study, an Adaptive Neuro Fuzzy Multi Codebook Generalized Learning Vector Quantization (AMFNGLVQ) algorithm has been developed to overcome the data overlapping and distribution spread problems.
Sleep quality measurement is done by identifying sleep stages based on electrocardiogram (ECG) signal. Data Overlapping and distribution spreads are still the main problems in identifying sleep stages. Based on experiment results, the proposed method has an accuracy rate and kappa values better than previous algorithm. Based on the results of testing the proposed method can improve the recognition rate with an increase of 2% to 3% for Mitra data and 0.5% to 1.5% for the MIT-BIH data. As for the test using the entire data Mitra average increase in accuracy rate reaches 3% to 7%."
Depok: Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hafizh Haidar
"ABSTRAK

Sistem pendeteksi kardiomegali dilakukan dengan memeriksa hasil citra radiografi toraks manusia. Pada bagian ekstraksi fitur, citra diproses menggunakan metode Discrete cosine transform. Pada sistem ini, digunakan DCT sebanyak 5 level. Hasil dari proses DCT akan digunakan sebagai input untuk proses selanjutnya, yaitu Learning vector quantization. Bagian klasifikasi menggunakan LVQ terdiri dari dua bagian, yaitu bagian pelatihan dan bagian pengenalan. Bagian pelatihan merupakan bagian dimana sistem dilatih untuk mendapatkan bobot akhir. Bagian pengenalan merupakan bagian yang sistem gunakan untuk mengenali ada atau tidaknya kardiomegali dengan hasil pembelajaran dari bagian pelatihan. Sistem menunjukkan hasil akurasi pengujian yang cukup tinggi, yaitu 97,78% dimana dari 45 citra uji, 44 citra dapat diklasifikasikan dengan baik.


ABSTRACT

The detection system of cardiomegaly is conducted by processing human CXR, or chest X-Ray. In feature extraction, X-Ray images are processed using Discrete Cosine Transfom method. In this system, 5-Level DCT is applied. The result of feature extraction is used as input for the next method, which is Learning vector quantization. LVQ consists of two parts, which are the training part and the testing part. The training part is when the system is trained to obtain final weight. The testing part is where system recognizes and decides whether the CXR shows the indication of cardiomegaly based on the knowledge it obtained from the training part. The system shows high testing accuracy, which is 97,78% where 44 out of 45 X-Ray images have been well-diagnosed.

"
Fakultas Teknik Universitas Indonesia, 2015
S59878
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rika
"ABSTRAK
Pada beberapa tahun terakhir, sistem pengenalan wajah telah marak digunakan dalam berbagai aspek sebagai wujud dari kemajuan teknologi. Berbagai penelitian dilakukan untuk terus memperbaiki akurasi dari pengenalan wajah. Pada penelitian ini digunakan metode klasifikasi Learning Vector Quantization dan Fuzzy Kernel Learning Vector Quantization. Data yang digunakan adalah Labeled Face in The Wild-a LFW-a. Database ini tidak memiliki batasan seperti latar belakang, ekspresi, posisi, dan sebagainya. Berdasarkan hasil uji coba menggunakan database LFW-a, sistem pengenalan wajah dengan metode LVQ memiliki akurasi tertinggi 89,33 dan metode FKLVQ memiliki akurasi tertinggi 89,33 pula.

ABSTRACT
In recent years, face recognition is widely used in various aspects as a form of technology advancement. Various studies are conducted to keep improving the accuracy of face recognition. In this research, Learning Vector Quantization and Fuzzy Kernel Learning Vector Quantization are used as a method of classification. The data used in this research is Labeled Face in The Wild a LFW a. This database has no restrictions such as background, expression, position, and so on. Based on test results using LFW a database, face recognition using LVQ method has highest accuracy at 89,33 and FKLVQ method has highest accuracy at 89,33 as well."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andry Sunandar
"Telah dilakukan penelitian terhadap pengembangan algoritma FNGLVQ sehingga memiliki karakteristik adaptif terhadap data input sehingga besaran perubahan vektor referensi memiliki besaran nilai yang adaptif. Karakteristik adaptif didapatkan dengan melakukan modifikasi terhadap perubahan update bobot dengan melakukan penurunan fungsi keanggotaan fuzzy tidak hanya terhadap parameter mean (yang dilakukan pada FNGLVQ awal) namun penurunan dilakukan terhadap kedua nilai min dan max sehingga besaran perubahan nilai min dan max akan bervariasi (tidak konstan seperti FNGLVQ) yang tergantung dari besaran input yang digunakan.
Karakteristik ini dapat meningkatkan akurasi dalam percobaan dalam ketiga jenis data, yakni data EKG Aritmia, data pengenalan Aroma dengan 3 campuran, serta data Sleep secara keseluruhan, namun perbedaan nilai akurasi terbesar didapatkan dari pengujian data pengenalan aroma 3 campuran. Pengembangan karakteristik adaptif terhadap algoritma FNGLVQ dilakukan dengan kedua jenis fungsi keanggotaan yakni fungsi keanggotaan segitiga dan fungsi keanggotaan PI, dan FNGLVQ adaptif dengan fungsi keanggotaan PI sedikit lebih baik dibandingkan FNGLVQ adaptif dengan fungsi keanggotaan segitiga.

This research has been conducted on the development of FNGLVQ algorithms which have adaptive characteristics to the input data so that the amount of change in the reference vector has a magnitude of adaptive value. Adaptive characteristics are obtained by modifying the update changes the weight by doing a fuzzy membership function derivation. This is not only performed on the parameters of the mean (which is done at the beginning FNGLVQ) but they are derivated to both min and max values so that the amount of change in the weight and is continued with min and max values will vary (not constant as in the case of FNGLVQ) which in turn depends on the amount of inputs used.
These characteristics may increase the accuracy of the experiment in all three types of data, including data Arrhythmia ECG, data recognition Aroma with 3 mix, as well as overall Sleep data, but the biggest difference is the accuracy of values which have obtained from the test for 3 mixed aroma data recognition. Development of adaptive characteristics of the algorithm FNGLVQ has been performed with both types of membership functions namely triangular membership functions and PI membership functions, and FNGLVQ PI adaptive membership functions has been found to be slightly better than FNGLVQ adaptive triangular membership functions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadisa Karina Putri
"Diabetes mellitus atau biasa disebut sebagai diabetes adalah penyakit metabolik yang disebabkan oleh penderita memiliki kadar gula darah yang tinggi dan organ pankreas tidak dapat memproduksi hormon insulin secara efektif. Diabetes dapat mengakibatkan penyakit yang lebih parah seperti kebutaan, gagal ginjal, dan penyakit jantung. Oleh karena itu, pendeteksian sejak dini dibutuhkan agar pasien dapat mencegah penyakitnya sebelum menjadi lebih parah. Karena data medis biasanya berukuran besar dan tidak berdistribusi normal, beberapa peneliti menggunakan metode klasifikasi untuk memprediksi gejala penyakit atau mendiagnosa penyakit. Pada penelitian ini, digunakan algoritma Learning Vector Quantization (LVQ) untuk klasifikasi data set diabetes dengan seleksi fitur Chi-Square. Pada penelitian ini digunakan dua data set diabetes yaitu data set I dengan 8 fitur dan data set II dengan 19 fitur. Hasil dari penelitian ini menunjukkan bahwa untuk data set dengan 8 fitur, akurasi dan performa model tertinggi diperoleh ketika data set mengandung hampir seluruh fiturnya yaitu 7 fitur dengan akurasi sebesar 76,55%. Sedangkan untuk data set dengan 19 fitur, akurasi dan performa model tertinggi diperoleh ketika data set telah melewati proses seleksi fitur dengan menggunakan metode Chi-Square yaitu pada model dengan 10 fitur dengan akurasi sebesar 78,96%.

Diabetes mellitus or commonly referred as diabetes is a metabolic disorder caused by high blood sugar level and the pancreas that does not produce insulin effectively. Diabetes can lead to more relentless disease such as blindness, kidney failure, and heart attacks. Therefore, early detection is needed in order for the patients to prevent the disease for being more severe. According to the non-normality and huge size of data in medical field, some researchers use classification methods to predict symptoms or diagnose patients. In this study, Learning Vector Quantization (LVQ) is used to classify the diabetes data set with Chi-Square Feature Selection. This study adopted two kinds of diabetes data set which are, data set I that contains 8 features and data set II that contains 19 features. The result of the experience shows that for data set I, the highest accuracy and model performance is achieved when the model contains most of its features which is the model that contains 7 features with 76,55% of accuracy. Moreover, for data set II, the highest accuracy and model performance is achieved when the model contains features that has been selected with the Chi-Square feature selection which is the model with 10 features and the accuracy achieved is 78,96%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pinem, Josua Geovani
"Keamanan data (data security) sudah menjadi bagian vital didalam suatu organisasi yang menggunakan konsep sistem informasi. Semakin hari ancaman-ancaman yang datang dari Internet menjadi semakin berkembang hingga dapat mengelabuhi firewall maupun perangkat antivirus. Selain itu jumlah serangan yang masuk menjadi lebih besar dan semakin sulit untuk diolah oleh firewall maupun antivirus. Untuk dapat meningkatkan keamanan dari suatu sistem biasanya dilakukan penambahan Intrusion Detection Sistem IDS , baik sistem dengan kemampuan anomaly-based maupun sistem pendeteksi dengan kemampuan signature-based. Untuk dapat mengolah serangan yang jumlahnya besar maka digunakan teknik Big Data. Penelitian yang dilakukan ini menggunakan teknik anomaly-based dengan menggunakan Learning Vector Quantization dalam pendeteksian serangan.
Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang masuk kemudian memberi keluaran sesuai dengan masukan tersebut. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter uji yang ada pada LVQ. Dengan melakukan variasi pada parameter uji learning rate, epoch dan k-fold cross validation dihasilkan keluaran dengan hasil yang lebih efisien.
Keluaran diperoleh dengan menghitung nilai information retrieval dari tabel confusion matrix tiap- tiap kelas serangan. Untuk meningkatkan kinerja sistem maka digunakan teknik Principal Component Analysis untuk mereduksi ukuran data. Dengan menggunakan 18-Principal Component data berhasil direduksi sebesar 47.3 dengan nilai Recognition Rate terbaik sebesar 96.52 dan efesiensi waktu lebih besar 43.16 daripada tanpa menggunakan PCA.

Data security has become a very serious part of any organizational information system. More and more threats across the Internet has evolved and capable to deceive firewall as well as antivirus software. In addition, the number of attacks become larger and become more dificult to be processed by the firewall or antivirus software. To improve the security of the system is usually done by adding Intrusion Detection System IDS , which divided into anomaly based detection and signature based detection. In this research to process a huge amount of data, Big Data technique is used. Anomaly based detection is proposed using Learning Vector Quantization Algorithm to detect the attacks.
Learning Vector Quantization is a neural network technique that learn the input itself and then give the appropriate output according to the input. Modifications were made to improve test accuracy by varying the test parameters that present in LVQ. Varying the learning rate, epoch and k fold cross validation resulted in a more efficient output.
The output is obtained by calculating the value of information retrieval from the confusion matrix table from each attack classes. Principal Component Analysis technique is used along with Learning Vector Quantization to improve system performance by reducing the data dimensionality. By using 18 Principal Component, dataset successfully reduced by 47.3 , with the best Recognition Rate of 96.52 and time efficiency improvement up to 43.16.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67412
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paskalis Nandana Yestha Nabhastala
"Penelitian yang dilakukan berupa pengembangan terhadap sistem pendeteksi plagiarisme otomatis sehingga dapat menerapkan jaringan saraf tiruan Self-Organizing Map SOM untuk melakukan klasifikasi terhadap hasil keluaran Latent Semantic Analysis. SOM dipilih untuk melakukan klasifikasi karena algoritma ini tidap perlu melakukan supervisi pada proses pembelajarannya sehingga dapat secara otomatis menentukan tingkat plagiarisme antar paragraf yang tidak mudah ditentukan secara langsung oleh manusia. Selain itu dilakukan perbandingan akurasi penentuan tingkat plagiarisme yang dimiliki oleh sistem apabila hanya menggunakan LSA saja, penggunaan LSA dengan SOM, dan penggunaan LSA dengan Learning Vector Quantization LVQ.
Penggunaan SOM dan LVQ dilakukan untuk melakukan klasifikasi tingkat plagiarisme dari hasil keluaran LSA. Penentuan tingkat plagiarisme sudah cukup dilakukan apabila hanya menggunakan LSA saja, dimana sudah dapat menghasilkan tingkat akurasi paling tinggi yaitu 86,24. Namun, penggunaan SOM dengan jumlah kelas sebanyak 2 dengan 3 parameter memberikan rata-rata tingkat akurasi yang sedikit lebih rendah, yaitu sebesar 82,00. Sedangkan penggunaan LVQ dengan jumlah kelas sebanyak 2 dengan 3 parameter juga memberikan rata-rata tingkat akurasi yang sedikit lebih tinggi dibandingkan, yaitu sebesar 82,10.

This research has concern on deployment of neural network algorithm Self Organizing Map SOM in automatic plagiarism detector so it could be used to classify the output from Latent Semantic Analysis. SOM is chosen because it is an unsupervised neural network algorithm. With unsupervised neural network, it could determine the plagiarism level between paragraf automatically, which hard for human to determine it. Other than deployment of SOM, this research also focusses on the comparison of accuracy of the system if the system only deploys pure LSA, combination of LSA and SOM, and combination of LSA and Learning Vector Quantization LVQ.
SOM and LVQ are used to do classification for the output from LSA. Plagiarism level could be determined by the result of LSA only. It has 86,24 as the highest accuracy level. But, the usage of SOM with 2 classes and 3 parameters gives lower average of accuracy, which is 82,00 . Therefore, usage of LVQ with 2 classes and 3 parameters gives slight better accuracy than SOM, which is 82,10.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>