Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 195208 dokumen yang sesuai dengan query
cover
Luki Dwana Anugrah Alamsyah
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T27305
UI - Tesis Open  Universitas Indonesia Library
cover
Yulianto Kartiko
"Tesis ini membahas pengukuran risiko kredit menurut Basel II, yang berbeda dengan ketentuan Basel I yang berlaku saat ini. Untuk pengukuran kredit korporasi PT. Bank X telah mulai mempersiapkan diri dengan menerapkan sistem internal rating yang berjalan mulai tahun 2004. Internal rating merupakan salah syarat yang harus dipenuhi untuk melakukan pengukuran kredit sesuai dengan Basel II.
Basel II memperkenal 3 metode pengukuran risiko kredit terutama untuk kredit usaha, yaitu Standardized Approach, IRB Foundation Appraoch dan IRB Advanced Approach. Dalam tulisan ini ketiga metode tersebut diterapkan untuk mengukur minimum capital charg.. Sesuai dengan data yang diperoleh risiko kredit yang diukur adalah portepel kredit yang dimiliki oleh Divisi Usaha Menegah PT. Bank X.
Hasil pengukuran risiko kredit ini masing-masing diperbandingkan mana yang lebih effisien dalam menghitung risiko kredit. Selanjutnya hasil kesimpulan yang diperoleh dapat dijadikan bahan masukan bagi manajemen PT. Bank X, ataupun bank-bank lain yang menghadapi permasalahan yang sama.

The focus of this study is measuring credit risk using Basel II method. This preparation already started from 2004 through the implementation of internal rating system. Internal rating system as one of the term to be full filled to measring credit risk using Basel II.
Basel II introduce 3 methods to measuring credit risk specialy for corporate loan, which is Standardized Approach, IRB Foundation Approach dan IRB Advanced Approach. The subject on this paper is to implement 3 methods, calculate minimum capital charge using data of credit portfolio middle marker segment PT. Bank X.
The results from the measurement of each method then compared to find which method is more efficient in calculating credit risk. Therefore the conclusion is an input for the management of PT. Bank X as for the other banks who facing the same problem.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25408
UI - Tesis Open  Universitas Indonesia Library
cover
Iik Ganjar Taufik Hidayat
"Metode pengukuran risiko kredit pada Bank X saat ini menggunakan metode standard (Basel I) dimana metode ini telah diketahui umum memiliki banyak kelemahan yang salah satunya adalah kurang sensitif terhadap kualitas kredit. Sejalan dengan tuntutan Basel II dalam penghitungan pemenuhan modal minimum, Bank X telah memiliki Intenal Rating System, namun belum dapat menetukan model pengukuran risiko kredit apa yang paling sesuai dengan karakteristik bisnisnya_ Karya akhir ini mengukur risiko kredit usaha menengah Sank X menggunakan metode CreditMetrics dan dibandingkan hasilnya dengan metode standard.
Data yang digunakan untuk menghitung probabilitas migrasi rating adalah data rating debitur usaha Menengah antara Bulan Januari 2004 hingga Juli 2006, sedangkan untuk penghitungan VaR menggunakan data seluruh portofolio usaha tersebut. Data pendukung lainnya diperoleh dari Bisnis Indonesia, dan sumber lain di Bank X. Tahap-tahap penghitungan EL dan UL mengikuti metode seperti yang disampaikan dalam Tecnicral Document CreditMetrics dari J.P Morgan (1997) serta beberapa literatur tekait. Untuk mempermudah penghitungan terlebih dahulu dibuatkan aplikasi kecil menggunakan Microsoft Visual Basic 6.0 dan Microsoft Access 2002.
Hasil pengolahan data menunjukkan bahwa EL yang dihitung dengan CreditMetrics jauh lebih kecil dibandingkan dengan PPA yang dibentuk oleh Bank X yaitu sekitar 5.47%. Perlu dicatat bahwa pembentukan PPA yang dilakukan Bank X lebih besar dari yang wajib dibentuk yaitu kurang lebih 140%. Pada tingkat kepecayaan 99%, VaR yang dihasilkan adalah rata-rata sebesar 10.86% dari besarnya portofolio, lebih besar dibandingkan dengan ketentuan pemenuhan modal minimum saat ini yaitu sebesar 8%. Untuk tingkat kepercayaan lain yaitu 95% dan 90% nilai VaR lebih kecil dari 8%.
Realisasi kerugian yaitu hapus buku selama periode pengamatan, nilainya selalu lebih kecil dibandingkan besarnya VaR pada seluruh tingkat kepercayaan, dengan demikian tidak tidak terdapat penyimpangan. Meskipun hal ini mengarahkan pada kesimpulan seolah-olah CreditMetrics adalah model yang baik, namun perlu mendapat perhatian bahwa dalam pelaksanaan penghapusbuku banyak didasari pertimbangan non bisnis.

The standard method (Basel I) is used by Bank X as a method to measure Credit Risk. Unfortunately it has well known much weakness such as less sensitive to credit quality. According to Basel II in calculating of the total minimum capital requirement, Bank X have implemented Internal Rating System, but somehow still not been able to choose credit risk measurement model which is the best for its business characteristic. This Paper measures the middle market credit risk usahat with Credit Metrics method and compares the result with the standard method.
The data used to calculate rating migration are obtained from middle market segment customer rating report from Januari 2004 to July 2006, meanwhile VaR is calculated using all segment portfolio. Other supporting data are obtained from Business Indonesia and Bank X. EL and UL calculation steps come from Credit Metrics Technical Document from J.P Morgan (1997) and other literatures. Small application developed by utilizing Visual Basic 6.0 and Microsoft Access 2002 is used to help on calculation.
Calculation result shows that EL with Credit Metrics having smaller number than recent reserve with proportion of about 5.47%. As an attention, Bank X booking reserve is bigger than minimum reserve requirement which is about 140%. On 99% confident level VaR, the result is about 10.86% from the portfolio, which is bigger than capital minimum requirement. On another confidence level (i.e 95% and 90%), VaR is less then 8%.
Real loss during period of perception is less than VaR with all conficence level conditions. This condition leads to incorrect decision that Credit Metrics is assumed to be a Good model to measured credit risk. In reality, writing-off decision is commonly made of non-business consideration."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2007
T19750
UI - Tesis Membership  Universitas Indonesia Library
cover
Diah Kusumo Dewi
"Penerapan CreditRisk+ dilakukan untuk menghitung risiko kredit usaha kecil pada Bank X se1ama kurun waktu Januari 2006 - Desember 2008. CreditRisk"' merupakan default mode yang memandang kualitas kredit sebagai default dan no default, tidak mengasumsikan penyebab terjadinya default. Kredit dinyatakan default apabila tunggakan kewajibannya telah melebihi 90 hari, sesuai ketentuan Bank Indonesia. Pengukuran CreditRisk+ dilakukan dalam 2 tahapan. yaitu : pertama menghitung frequency of defaults dan severity of losses, kedua menghitung distribution of default losses. Frequency of defaults dihitung dengan menggunakan distribusi Poisson dengan tingkat keyakinan 95%. Sedangkan severity of losses diperoleh dengan menghitung loss given default. Sementara distribution of default losses diperoleh dengan menghitung besarnya potensi kerugian berupa expected loss, unexpected loss, dan economic capital, yaitu cadangan modal yang harus disiapkan uotuk menutup unexpected loss. Berdasarkan hasil backtesting dengan Loglikelihood Ratio (LR) Test diperoleh nilai LR sebesar 0 yang lebih kecil dibandingkan nilai kritis Chi-squared sebesar 3.8415 yang menunjukkan bahwa metode CreditRisk"' masih valid digunakan sebagai model internal untuk mengukur risiko kredit usaha kecil pada Bank X.

Implementation of CreditRisk+ is used for small enterprise credit measurement of Bank X during Januari 2006- Desember 2008. CreditRisk+ is a default mode model that credit quality as a default and no default, no assumptions are made about the causes of default. Credit is stated default if a pending of credJt payment is more than 90 days, based on Bank Indonesia regulation. CreditRisk• measurement has two steps, first measuring frequency of defaults and severity of losses, second measuring distribution of default losses. Frequency of defaults is measured by using Poisson distribution with 95% confidence level. Severity of losses is taken by measuring loss given default. Meanwhiles, distribution of default losses is taken by measuring potensial default such as expected loss, expected loss, and economic capital, capital reserved that has to be prepared to cover unexpected loss. Based on the results of the backtesting through Loglikelihood Ratio (LR) Test, a Likelihood Ratio of 0 is smaller than a Chi-squared of 3.8415 which represents that CreditRisk+ method is still valid to be used for internal model for measuring small enterprise credit of Bank X."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T 27173
UI - Tesis Open  Universitas Indonesia Library
cover
Hari Sakti
"Tesis ini membahas perhitungan risiko atas kredit usaha kecil pada Bank X. Pemilihan pengukuran risiko kredit dengan menggunakan pendekatan creditrisk diperlukan sesuai dengan karakteristik kredit yang memiliki nasabah dalam jumlah besar dan nilai penyaluran kredit yang relatif kecil. Pengukuran creditrisk dilakukan dengan menghitung frequency of default dan loss given default dan menghitung distribution of default losses. Distribution of default losses digunakan untuk menentukan nilai expecied loss, unexpected loss dan economic capital.
Nilai economic capilal merupakan besarnya cadangan modal yang harus dibentuk Bank X untuk menutup expected loss. Pengujian dengan menggunakan backresting dengan loglikelihood ratio (LR) test, diperoleh bahwa metode creditrisk cukup valid untuk mengukur risiko atas kredit Bank X.

This research analyzes the calculation of credit risk in Bank X especially in small business lending. Creditrisk approach is needed for measuring credit risk regarding its characteristics which has many customers and relatively small amount of credit portfolio. Creditrisk measurement is conducted by computing frequency of default, loss given default and distribution of default losses. Distribution of default losses is used to determine the value of expected loss, unexpected loss and economic capital.
The value of economic capital is the amount of capital reserve that must be provided by a bank to cover expected loss. Based on the test using backtesting with loglikelihood ratio (LR) test, is is concluded that creditrisk method is valid for measuring credit risk in Bank X."
Depok: Universitas Indonesia, 2010
T33289
UI - Tesis Open  Universitas Indonesia Library
cover
Ira Widayanti
"Metode Credit Risk+ telah banyak digunakan untuk mengukur risiko kredit portofolio dengan karakteristik small balances dengan high volumes, seperti pada portofolio kartu kredit, dimana probability of default (PD) masing-masing account tidak saling mempengaruhi satu sama lainnya. Seperti yang telah disadari sebelumnya bahwa metode Credit Risk+ ini memiliki beberapa kelemahan yaitu salah satunya adalah mengabaikan pengaruh faktor eksternal seperti risiko pasar dan suku bunga.
Dalam penelitian ini penulis mencoba menarik hubungan antara beberapa faktor makro ekonomi terhadap probability of default eksposur kartu kredit setiap band. Nilai Expected Loss, Value at Risk (Unexpected Loss), dan Economic Capital dihitung dengan menggunakan unexpected number of default yang berasal dari hasil regresi linier PD terhadap variabel makro ekonomi.

Credit Risk+ method has been applied to measure credit risk of portfolios with small balances and high volumes such as credit cards porfolio, in which the probability of default (PD) of each account is mutually exclusive. As known before, there are some limitations of this method, like disregarding the influence of external factors such as market risk and interest rate risk.
In this research, the author is trying to find any correlations between macroeconomics variables and probability of default of credit cards exposures in each band. The values of Expected Loss, Value at Risk and Economic Capital will be measured by using unexpected numbers of default which are originated from single linear regression of PD to macroeconomics variables."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T28121
UI - Tesis Open  Universitas Indonesia Library
cover
Andong Tri Setyonegoro
"Karya akhir ini bertujuan untuk mengukur besarnya risiko kredit khususnya untuk scgmen karlu kredit Bank X di tahun 2005 dengan mempergunakan metode CreditRisk+. Alasan pcinilihan topik ini adalah :
a. Produk Karlu Kredit merupakan jenis kredit yang memiliki resiko tinggi, mengingat sejak keputusan pemberian kredit oleh bank cenderung hanya didasarkan kepada verifikasi dokumen pendukung seperti slip gaji, surat keterangan, lembar penagihan kartu kredit bank lain, hasil rating sesama anggota Asosiasi Kartu Kredit Indonesia (AKKI), hasil verifikasi melalui telepon, serta lambahan dokumen pendukung lainnya, dan hanya sebagian calon pemegang karlu kredit yang prosesnya didahului oleh survey atau pengecekan lapangan mengingat kemampuan bank umumnya tidak memungkinkan unluk melakukan pengecekan lapangan semua calon pemegang kartu kredit, juga karena proses keputusan kredit hams sudah diberikan paling lambat lima hari sejak aplikasi kartu kredit diterima bank, selain itu kredit yang diberikan adalah unluk tujuan konsumsi dan tidak memiliki jaminan atas pemberian kredit tersebut.
b. Bank X adalah penerbit kartu kredit terbesar not-nor dua di Indonesia di tahun 2005 setelah Citibank dengan jumlah pcmegang kartu kredil lebih dari 800.000 Cardholder dengan total outstanding balanced sebesar lebih dari Rp. 1,5 trilyun sehingga terdapat potensi risiko kredit yang cukup besar khususnya dalam hal terjadinya Default bagi Bank X, apabila pengeiolaan risiko kredit nya tidak dilakukan secara baik.
c. Bank X belum mencrapkan metode Internal Raring Base (IRB) approach khususnya metode CrcclitRiski- untuk menghitung risiko kredit portofolio kartu krcdit nya.
d. Adanya ketentuan Basel 11 tcntang kcharusan menghitung risiko krcdit scbagai salah satu unsur dalam menghitung CAR.
Berdasarkan ketentuan Basel II, perhitungan risiko krcdit dapat mempergunakan beberapa pendekatan, antara lain dengan Standardized Model dan Internal Model, dimana dalam penelitian ini akan dilakukan perhitungan dengan menggunakan Internal Model dengan pendekatan CreditRisk+.
CreditRisk+ dianggap sebagai Internal Model yang tepat untuk menghitung risiko krcdit pada suatu portofolio, hal ini karena metode ini dapat dipergunakan untuk menghitung risiko krcdit suatu portofolio krcdit dalam jumlah yang banyak namun dengan besaran outstanding masing-masing krcdit kecil, juga karena metode ini tidak memerlukan tambahan data makro sehingga dalam penerapannya lebih efisien namun tetap efektif. Selain itu metode ini dikenal scbagai Default Model yang hanya mcmbedakan portofolio krcdit menjadi dua golongan yaitu bagian portofolio krcdit yang An Del iult dan Default saja scrta mcngabaikan penycbab tcrjadinya Default tersebut.
Penerapan CreditRisk+ dilakukan dengan menghitung risiko kartu kredit di Bank X dengan batasan-batasan scbagai berikut :
a. Data portofolio kartu kredit yang dipergunakan adalah data selama 12 bulan di tahun 2005.
b. Nilai exposure berkisar antara Rp 500 ribu hingga Rp 250 juta, mengingat hampir 90% oposure yang ada di dalam portofolio Bank X berada pada kisaran nilai tersebut, tanpa memperhatikan jenis kartu kredit Classic, Gold atau Platinum.
Secara garis besar, tahapan penghitungan risiko kredit mempergunakan metade CreditRisk+ dilakukan dcngan mcnghitung Frequency of Default dan Severity cof Losses, kemudian rnenghitung Distribution of Default Losses. Selanjutnya dari perhitungan terschut, akan diperaleh besamya potensi kerugian berupa Expected Loss. Unexpected Loss dan bcsarnya Economic Capital untuk menutup kerugian yang terjadi.
Perhitungan portofolio kartu kredit dengan mempergunakan metade CreditRisk+ dengan asunisi tingkat keyakinan 95% dan Probability of Default dihitung dcngan Poisson Model, menunjukkan basil sebagai berikut:
a. Nilai Expected Loss yang menunjukkan besamya kerugian yang diperkirakan tcrjadi setiap bulan dapat dihitung nilainya mempergunakan metode CreditRisk+, sebagai contoh nilai Expected Lost di bulan November 2005 bcsarnya adalah Rp.74,823 Milyar. Nilai Expected Loss setiap bulan tersebut diharapkan dapat ditutup olch nilai PPAP yang dibcntuk oleh Bank X dan dcngan mernpergunakan Likelihood Ratio Test dikctahui bahwa hampir scluruh Expected Loss yang ada di tahun 2005 masih dapat ditutup oleh nilai Pencadangan Penghapusan Aktiva Produktif(PPAP) yang dibcntuk olch Bank X.
b. Dengan pencrapan metade CreditRisk+ dal= penelitian ini, besamya nilai VaR sctiap bulan juga dapat dihitung nilainya, dengan tingkat kepercayaan 95 % maka nilai VaR suatu bulan menunjukkan proyeksi besamya nilai kerugian terbesar (Unexpected Loss) bulan berikutnya, sebagai contoh nilai VaR bulan November 2005 sebesar Rp.82,875 Milyar yang menunjukkan proyeksi nilai kerugian maksimum bulan Desember 2005 dengan tingkat kepercayaan 95 %, dimana nilai kcrugian aktual pada bulan Desembcr adalah sebesar Rp.80,303 Milyar.
c. Hasil pengujian dcngan metode Likelihood Ratio pada tingkat kepercayaan 95%, mcnunjukkan bahwa sclama periodc pengamatan besarnya nilai VaR yang mcrupakan proycksi jumlah kerugian terbcsar bulan bcrikutnya cukup akurat untuk dipcrgunakan dalam mcnghitung risiko krcdit, karena selama periodc pengamatan seluruh nilai kcrugian aktual yang terjadi masih dibawah =bang batas jumlah kcrugian yang dapat ditolelir atau tidak terdapat nilai kerugian aktual yang nilainya lcbih bcsar atau sama dcngan nilai- VaR yang dihitung dcngan mctodc CredirRisk+.
d. Dengan mempcrbunakan mctodc CredizRi.sk+, Bank X mempcrolch insentif berupa penurunan kewajiban pemenuhan modal, scbagai contoh di bulan November 2005 kewajiban pemenuhan modal mempcrbunakan metode CrecliiRisk+ adalah 0.39 % dad total exposure nya, angka ini jauh lcbih rendah dibandingkan dengan mempcrbunakan Standardized Approach yang mcnghasilkan kewajiban pemenuhan modal sebesar 6,29 % dari total exposure, schingga Bank X mempcrolch insentif nilai modal sebesar 5,90% (6,29% - 0,39%) yang dapat dialokasikan oleh Bank X untuk kcpcntingan lainnya yang lcbih produktif.
e. Bank X memperolch manfaat lain dad pcncrapan metode CredirRisk+, selain dapat menghitung risiko kredit nya secara Icbih akurat. pcncrapan metode ini dapat mcmbantu manajcmen Bank X dalam mcnyusun strategi yang lebih cfcktif dan pengalokasian SDM yang Iebih akurat dalam mclakukan penagihan kreditnya yang Default.

The purpose of this thesis is to measure credit risk especially for the credit card segment of Bank X in 2005 by utilizing the CreditRisk+ method.
The reasons of selecting this topic are:
a. Credit Card is a type of credit that has a high risk, because since the decision of credit offer by the bank tends to be only based on supporting document verification for instance salary slip, recommendation letter, other bank's billing statement, rating result from other members of Asosiasi Kartu Kredit Indonesia (AKKI), phone verification result, as well as (he addition of the other supporting document, and only some of the process of the cardholder's applicant is proceeded by survey or external verification (on the spot), concerning that the bank's capacity generally does not possible to do field verification for all applicants, also because of the decision must been given at least in five days since the credit card application is accepted by the bank, moreover credit that is given aims for consumption and does not have the collateral.
b. The Bank X is on 2''d rank of credit card's issuer in Indonesia in 2005 after Citibank, with the numbers of cardholders are more than 800.000 and the total outstanding balanced is more than Rp.1,5 trillion. On that condition, The Bank X has a potential high risk on its credit especially in the matter of the default occurrence, if the risk management of its credit is not well developed.
c. The Bank X has not applied the method of Internal Rating Base (IRB) approach yet especially the CreditRisk+ method to calculate the credit risk of its credit card's portfolio.
d. There is the regulation of Basel II about obligation to calculate the credit risk as one of the elements in calculating Capital Adequacy Ratio (CAR).
Based on the Based in regulation, the calculation of the credit risk can be utilized in several approaches, such as by Standardized Model or Internal Model, that in this research it will be done credit risk calculation by using Internal Model with the CreditRisk+ approach.
CreditRisk+ was reputed as the precise Internal Model to calculate the risk of credit in a portfolio, because this method can be utilized to calculate the risk of credit in a large portfolio of each small credit, also because of this method do not need the addition of the macro's economic data, so in its implementation is more efficient but still effective. Moreover this method is known as the Default Model that differentiates the credit portfolio only into two groups, the first is a Not Default credit portfolio and the other one is a Default credit portfolio, also this model ignores the cause of the Default occurrence.
The implementation of CreditRisk+ is done by calculating the risk of the credit card in the Bank X with limitations as follows:
a. The credit card portfolio data is the data for 12 months in 2005.
b. The exposure revolves between Rp. 500 thousand up to Rp. 250 million; considering that almost 90% exposure available in the Bank X's portfolio is in that value range, without considering the type of Classic, Gold or Platinum card.
In general, the stage of calculating credit risk with the CreditRisk+ method will be done by calculating Frequency of Default and Severity of Losses, afterwards calculating Distribution of Default Losses.
From the result, will gel the potential loss such as Expected Loss, Unexpected Loss and the Economic Capital to cover the loss.
The calculation of credit card portfolio by utilizing the CreditRisk+ method with the assumption of the 95%conviction level and probability of default is calculated by Poisson's model, shows results as follows:
a. The Expected Loss that shows the estimated loss occurs every month can be calculated with CreditRisk+ method, for example is the Expected Lost value in November 2005 is Rp.74, 823 Billion. That value is expected to be covered by the PPAP that is formed by Bank X and by utilizing Likelihood ratio test it is known that almost all Expected Loss in 2005 still can be covered by the value of PPAP (Pencadangan Penghapusan Aktiva Produktif) that is formed by Bank X.
b. With implementation of the CrediiRisk+ method in this research, the size of VaR every month also can be calculated, using the 95 % level of reliability so value of VaR (Unexpected Loss) in a month shows the projection of the biggest losses in the following month, for example is the size of VaR in November 2005 is Rp.82, 875 Billion, it shows the projection of the maximum loss in December 2005 with the 95 %level of reliability, the actual loss in December is Rp.80, 303 Billion.
c. The result of the Likelihood Ratio method on 95% level of reliability shows that during the period of observation the size of VaR that shows the projection of the biggest loss in the following month. It is quite accurate to be utilized in calculating the risk of credit, because during the period of observation all of the actual value of loss that is happened is still under the limitation of tolerant total of loss or do not have the actual loss bigger than or same as the VaR value that is calculated with the CreditRisk+ method.
d. By utilizing the Credit Risk+ method, Bank X receives incentive of the capital's fulfillment obligation reduction, for example in November 2005 the fulfillment obligation of capital utilized by the CreditRisk+ method is 0,39 % from the total exposure, this number is much more lower compared with Standardized Approach that produces the fulfillment obligation of capital for 6,29 % from the total exposure, therefore Bank X receives 5,90% (6,29% - 0,39%) capital incentive that can be allocated in more other productive area by Bank X.
e. Bank X receives another benefit from the implementation of CreditRisk+ method, besides it can calculate the credit risk more accurately, this method implementation can help the management of Bank X to develop more effective strategy and more accurate human resources allocation in dunning its Default credit."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T19767
UI - Tesis Membership  Universitas Indonesia Library
cover
Satria Budi Rahardja
"ABSTRAK
Berdasarkan survei Bank Indonesia yang dirilis pada 13 Februari lalu, fasilitas KPR yang digunakan konsumen mencapai 70,6%. Ini menunjukkan peran perbankan masih tinggi dan proses pemberian kredit tersebut tidak luput dari risiko. Risiko terbesar adalah risiko kredit, oleh sebab itu risiko perlu di identifikasikan, diukur dan di kontrol. Karya akhir ini ditujukan untuk mengukur berapa besar probability of default kredit, expected loss dan unexpected loss, serta economic capital yang harus disediakan untuk mengantisipasi kerugian sehingga Bank dapat membuat keputusan yang tepat untuk meminimalkan risiko, dan model CreditRisk+ diharapkan dapat diterapkan dan dapat mengalokasikan secara optimal seluruh sumber daya yang dimiliki.

ABSTRACT
Based on a survey of Bank Indonesia which was released on February 13, KPR a facility used by most customers reach 70.6%. This shows the role of Banks in financing the house is still high. However, the process of granting credit did not avoid from risk. The greatest risk in the Banking is credit risk. Therefore needs to identify, measure and control the risks. This thesis is intended to measure how much probability of default of loans, measure the losses that can be expected and cannot be estimated from the credit issued and can find out how much economic capital that should be provided to anticipate the losses that cannot be expected that the Bank can make the right decisions to minimize the risk that will arise, and CreditRisk + model that can be used is expected to be applied and can be optimally allocate all resources.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T27262
UI - Tesis Open  Universitas Indonesia Library
cover
Desinta Hatmaria
"Seiring dengan semakin tingginya kebutuhan masyarakat, semakin tinggi pula transaksi menggunakan kartu kredit yang mencerminkan makin tingginya tingkat kepercayaan masyarakat terhadap kartu. Tetapi disisi lain, ratio kredit macet atau Non Performing Loan (NPL) kartu kredit cenderung meningkat. Sebagai salah produk perbankan yang bersifat massal, kartu kredit memiliki risiko yang tinggi biasanya penerbitannya tanpa mernerlukan jaminan atau agunan, Bank selaku penerbit harus melakukan prinsip kebati-hatian dalam menerbirkan kartu kredit dan selain itu, Bank juga harus mengantisipasi risiko kerugian kredit baik expected loss maupun unexpected loss dengan menerapkan manajemen risiko. CreditRisk+ adalah sa1ah metode yang sederhana yang dapat diterapkan untuk pengukuran risiko kredit khususnya Kartu Kredit. Meialui perbitungan dengan CreditRisk+ dapat diketahui eronomic capital yang harus dipersiapkan untuk mengantisipasi unexpected Joss. Pengujian pennodelan divalidasi dengan metode Kupiec untuk mengetahui akurasi model resiko kredit dalam memproyeksi potensi kerugiannya

The increasing needs of society reflects on the incresing number of number credit card transaction. But on the other hand. non performing loan of credit card tends to increase as well. Credit card is considered as a high risk banking product since it is a mass product and need no collateral required Bank is advised to be prudent while issuing credit card and also should anticipate either expected loss or unexpected loss by implementing risk management. In assessing credit risk especially credit card risk. CreditRisk+ is one of simple method that may be implemented Through CreditRJsk+· method, Bank will be able to detennine the economic capital in anticipating any unexpected lass. Kupiec method is used to authenticated the validation of model to ensure the accuracy of credit risk model in projecting the loss."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T 27169
UI - Tesis Open  Universitas Indonesia Library
cover
Lydia Retno Gunarsih
"Iklim investasi yang cenderung menurun tidak menyurutkan pemberian kredit konsumtif. Hal ini terjadi karena kredit konsumtif merupakan jenis kredit yang banyak ditawarkan oleh perbankan saat ini karena kemudahan memperolehnya dan sifatnya yang individual sehingga menarik para calon debitur. Namun demikian, proses pemberian kredit tersebut tidak luput dari risiko kredit. Bank pemberi kredit harus mengetahui manajemen risiko, khususnya risiko kredit terlebih menyangkut berapa besarnya economic capital yang harus disiapkan dalam mengantisipasi risiko expected loss dan unexpected loss yang mungkin timbul. Perhitungan economic capital dilakukan dengan menggunakan Internal Model CreditRisk+. Pengujian karakteristik distribusi kerugian dilakukan dengan tes Chi-Square dan permodelan divalidasi dengan metode Kupiec untuk mengetahui akurasi model risiko kredit dalam memproyeksi potensi kerugiannya.

Although investment climate has relatively descended, but it has not descended the granting of consumer loan since such variety of credit can be easily attained as provided by many banks and also by its individual characteristic which attracts prospective debtor. However, its granting process must not be separated from credit risk. The lender bank must recognize its risk management aspect, especially relates to the sum which has to be provided for anticipating either expected loss or unexpected loss risk may be aroused in the future. Economic capital can be exercised by Internal Model CreditRisk+ method after which testing on loss distribution characteristic can be exercised by Chi-Square and validation of the modeling can be exercised by Kupiec Test as purposed to obtain a certain accuracy on credit risk model in predicting potential loss."
Depok: Universitas Indonesia, 2009
T26379
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>