Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 47652 dokumen yang sesuai dengan query
cover
Bandung: Utrecht, 2010
510.07 DEC
Buku Teks SO  Universitas Indonesia Library
cover
Zaid Abdurrahman
"Kemajuan teknologi memicu pertumbuhan industri teknologi dan mendorong masyarakat untuk menggunakan smartphone, terutama untuk berkomunikasi di media sosial. Media sosial merupakan tempat yang efektif untuk mencari berbagai informasi. Oleh karena itu, media sosial menyimpan banyak data, terutama data tekstual. Data tersebut muncul dari para pengguna yang jumlahnya meningkat pesat. Data tekstual bisa digunakan untuk analisis sentimen. Skripsi ini membahas analisis sentimen untuk melihat kecenderungan suatu informasi dari penulisnya. Analisis sentimen mengklasifikasikan data tekstual menjadi kelas sentimen positif dan negatif. CNN merupakan salah satu algoritma deep learning yang dapat mengklasifikasi data tekstual. Model dari algoritma CNN menunjukkan hasil yang cukup baik dalam mengkalsifikasi permasalahan analisis sentimen dengan bantuan lifelong learning. Lifelong learning merupakan machine learning yang menyerupai proses belajar pada otak manusia. Proses yang dijalankan yaitu dengan memanfaatkan hasil pembelajaran dari masa lalu untuk membantu pembelajaran pada masa depan. 4 dataset dengan domain yang berbeda, dijalankan menggunakan model CNN pada proses Lifelong learning dan menghasilkan akurasi yang meningkat, seiring dengan penambahan dataset pada proses training.

Technological advances are fueling the growth of the technology industry and encouraging people to use smartphones, especially for surfing on social media. Social media is an effective tool to find information. Therefore, social media stores a lot of data, especially textual data. The data came from users whose numbers had increased rapidly. Textual data can be used for sentiment analysis. Sentiment analysis is conducted in this study to obtain the tendency of the authors about an article. Sentiment analysis classifies textual data into a class of positive and negative sentiments. CNN is one of the deep learning algorithms that can classify textual data into positive, negative and natural classes. The model of the CNN algorithm shows good results in classifying the problem of sentiment analysis with the help of lifelong learning. Lifelong learning is a machine learning that resembles the learning process in the human brain. The process that is carried out is by utilizing learning outcomes from the past to help learning in the future. 4 datasets with different domains had ran using the CNN model in the Lifelong learning process, and produced increased accuracy along with the addition of datasets in the training process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gita Kartika Suriah
"Analisis sentimen merupakan suatu proses untuk menentukan sikap atau sentimen dari penulis mengenai hal tertentu. Proses pengelompokan sentimen secara manual membutuhkan waktu cukup lama, sehingga diusulkan untuk menggunakan machine learning. Pada penelitian ini, model machine learning yang digunakan merupakan model CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) dan BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) yang menghasilkan kinerja yang lebih baik dibandingkan model CNN dan BiLSTM pada permasalahan analisis sentimen. Supaya model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan lifelong learning. Hasilnya, model CNN-BiLSTM menunjukkan kinerja transfer of knowledge yang lebih baik dibandingkan oleh model BiLSTM-CNN maupun model dasarnya. Di sisi lain, model BiLSTM-CNN menunjukkan kinerja yang lebih buruk dibandingkan model dasarnya. Sedangkan, hasil loss of knowledge menunjukkan bahwa kinerja model CNN- BiLSTM lebih buruk dari BiLSTM-CNN. Selain itu, kedua model gabungan tersebut menunjukkan kinerja yang lebih baik dibandingkan model CNN, tetapi lebih buruk dibandingkan model BiLSTM. Untuk pengembangan lebih lanjut, diimplementasikan pula lifelong learning dengan pembaruan vocabulary. Dengan implementasi tersebut, model mampu mempelajari vocabulary dari domain data 2, 3, 4, dan 5. Pembaruan vocabulary ternyata meningkatkan kinerja model pada transfer of knowledge dan loss of knowledge.

Sentiment analysis is a process to determine the attitude or sentiment of the author regarding certain matters. The process of classifying sentiments manually takes a long time, so it is proposed to use machine learning. In this study, the machine learning model used is the CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) and BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) models which produce better performance than the CNN and BiLSTM models on the problem of sentiment analysis. In order for the model to learn continuously from several data domains, the model is also implemented lifelong learning. As a result, the CNN-BiLSTM model shows better transfer of knowledge performance compared to the BiLSTM-CNN model and its base model. On the other hand, the BiLSTM-CNN model shows a worse performance than its base model. Meanwhile, the results of loss of knowledge show that the performance of the CNN-BiLSTM model is worse than the BiLSTM-CNN model. In addition, the two combined models show better performance than the CNN model, but worse than the BiLSTM model. For further development, lifelong learning is also implemented with an update to vocabulary. With this implementation, the model is able to learn vocabulary from data domain 2, 3, 4, and 5. In fact, the vocabulary update has an effect in increasing the performances of transfer of knowledge and loss of knowledge.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Learning achievement of Mathematics among Universitas Terbuka (UT) students generally are less satisfactory. A Mathematics tutorial model by using lesson study is measured based on the validity, practicality and effectiveness in improving the quality of the tutorial. The study was conducted in Surabaya. The respondents consist of Mathematics learning experts, Mathematics lecturer, tutors and UT's elementary school education students. The results showed that TMLS model and its learning instruments meet the criteria of Validity, practicality and effectiveness. It can be seen from the results of the implementation TMLS model that showed some advantages, such as (a) good response of the students toward TMLS model, (b) the TMLS model was suitable with the tutorial basic principle that is “students independence”, (c) the TMLS model increased students' mastery and thinking level at the mathematic modules, (d) the TMLS model had motivated students to be active in finding the deeper understanding of the subjects, (e) the TMLS model had motivated students students to improve their meta cognitive knowledge, (f) The tutor's role in the implementation of the TMLS model had motivated the students to be active in learning and developing their mathematics communication."
JPUT 12:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
"Manipulative materials is one of equipment that can be used for teaching mathematics concept to students at elementary schools. Hopefully the students have the skill to compute mathematics by fun. This research used to teach concept of addition and subtraction in grade five at public. Elementary Schools in Kecamatan Mandiangin Koto Selayan Bukittinggi. For collecting data, the respondents were given a test after learning the subject matter. The data processing was used the hypotesis test o mean of population by using software Minitab. Based on the data analysis this experiment show that (p<0,05) which means the difference of result of the test was significant. It concluded that the result of test of experiment group is better that control class."
2006
370 JPUNP 29:1 (2006)
Artikel Jurnal  Universitas Indonesia Library
cover
"This study examines whether students’ ability in mathematical writing and understanding gained from teaching through ‘think talk write’ strategy is better than students’ ability gained from conventional one. This study also examines students’ ability in mathematical writing and understanding from gender aspects. Using quantitative design, data was taken through documentary study, questioner sheets and observation. Data was analyzed using two ways ANOVA. Result show: a) the ability of students in mathematical writing and understanding gained from teaching using ‘think talk write’ strategy is better than the ability gained from conventional one; b) the ability of female students is better than male students; and c) Think Talk Write strategy can improve students’ mathematical disposition ability."
JPENUT 10:2 (2009)
Artikel Jurnal  Universitas Indonesia Library
cover
R. Soejadi
Jakarta: Dirjen. Pendidikan Tinggi Depdikbud, 2000
510.7 SOE k
Buku Teks SO  Universitas Indonesia Library
cover
Lina Hidayati
"The rapid development of online news on the Internet has increased the number of news document. Information about the main topics become a necessity for people to determine the trending that is discussed at a certain time. Therefore, a way to find the main topic of news from very large documents quickly and efficiently is developed. Topic detection is the process to find a topic from documents collection. Detecting topics on a very large document is hardly done manually so that automatic methods are needed. One method to detect topic automatically is the theory based on model matrix factorization, Nonnegative Matrix Factorization (NMF). NMF can be solved directly by using the assumption that every topic has at least one word that does not appear in other topic called the anchor word. In this research, NMF based on direct method will be applied for detecting the main topics of Indonesia online news.

Perkembangan berita online di internet meningkatkan jumlah berita yang tersedia. Informasi mengenai topik utama menjadi suatu kebutuhan bagi masyarakat untuk mengetahui hal yang dominan dibicarakan pada waktu tertentu. Oleh karena itu dibutuhkan suatu cara cepat dan efisien untuk menemukan topik utama dari dokumen berita yang sangat besar. Pendeteksian topik merupakan suatu proses untuk menemukan topik dari suatu koleksi dokumen. Pendeteksian topik pada dokumen yang sangat besar sulit dilakukan secara manual sehingga dibutuhkan metode otomatis. Salah satu metode otomatis untuk pendeteksian topik adalah model yang berbasis teori faktorisasi matriks yaitu Nonnegative Matrix Factorization (NMF). NMF pada pendeteksian topik dapat diselesaikan secara langsung dengan menggunakan asumsi bahwa setiap topik memiliki satu kata yang tidak terdapat pada topik lainnya yang disebut sebagai kata anchor. Dalam penelitian ini akan diterapkan NMF berbasis metode langsung untuk mendeteksi topik utama dari berita online Indonesia"
Depok: Universitas Indonesia, 2015
S60088
UI - Skripsi Membership  Universitas Indonesia Library
cover
San Francisco: Jossey-Bass, 1979
378.1554 PRE
Buku Teks  Universitas Indonesia Library
cover
Beth Herbel-Eisenmann
"This book explores the connection between the ways people speak in mathematics classrooms and their opportunities to learn mathematics. The words spoken, heard, written and read in mathematics classrooms shape students’ sense of what mathematics is and of what people can do with mathematics. The authors employ multiple perspectives to consider the means for transformative action with respect to increasing opportunities for traditionally marginalized students to form mathematical identities that resonate with their cultural, social, linguistic, and political beings.
"
Dordrecht, Netherlands: Springer, 2012
e20399974
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>