Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16648 dokumen yang sesuai dengan query
cover
Heward, James H.
New York : John Wiley & Sons, 1973
511.8 HEW b
Buku Teks SO  Universitas Indonesia Library
cover
Meredith, Jack R.
Mason, Ohio: South-Western, 2002
658.4033 MER q
Buku Teks  Universitas Indonesia Library
cover
Palm, William J.
New York: John Wiley & Sons, 1983
629.831 2 PAL m
Buku Teks SO  Universitas Indonesia Library
cover
Hafis Rialdy Azhari
"Dalam segala kompetisi olahraga, mengetahui tim mana yang akan menjuarai atau memenangkan pertandingan atau kejuaraan merupakan sesuatu yang menarik untuk diketahui oleh fans dan media, tak terkecuali dengan sepak bola yang beberapa tahun terakhir ini telah menjadi topik penelitian. Dalam skripsi ini digunakan model regresi Poisson untuk memprediksi hasil akhir pertandingan sepak bola, dengan memprediksi rataan gol yang dicetak suatu tim dalam setiap pertandingan yang mengikuti distribusi Poisson. Model regresi Poisson untuk banyak gol yang dicetak suatu tim dikonstruksi dari empat variabel yaitu gol yang dicetak dalam tiap pertandingan, keuntungan bermain kendang home advantage, kemampuan serangan offensive, kemampuan pertahanan deffensive. Metodologi diterapkan pada Liga Utama Inggris 2017-2018. Adapun hasil yang dikeluarkan memiliki tingkat akurasi yang cukup baik.

In any sport competition, there is a strong interest in knowing which team shall be the champion at the end of the championship and one of them is football. Football match predictions are of great interest to fans and sports press. In the last few years it has been the focus of several studies. In this essay, propose Poisson regression model to predict the final result of football matches. Predict the average goals scored by each team by assuming that the number of goals scored by a team in a match follows a univariate Poisson distribution. Poisson regression model for many goals scored by the team is formulated from four variables the goal average in a match, the home team advantage, the team 39 s offensive power, the opponent team 39s defensive power. The methodology is applied to the 2017 2018 English Premier League. The results obtained using this model has a fairly good accuracy.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zeleny, Milan, 1942-
New York: McGraw-Hill, 1982
658.403 ZEL m (1)
Buku Teks  Universitas Indonesia Library
cover
Peng-Fei, Yao
Boca Raton: CRC Press, 2011
620.112 48 PEN m
Buku Teks SO  Universitas Indonesia Library
cover
Faisal Khafie Alam
"Stunting adalah kondisi gagal tumbuh pada balita akibat dari kekurangan gizi kronis,
sehingga anak terlalu pendek pada usianya. Stunting memiliki dampak yang buruk
terhadap pertumbuhan dan perkembangan anak serta berpengaruh terhadap kualitas
sumber daya manusia di masa depan. Dalam rangka menurunkan angka stunting di
Indonesia, pada tahun 2018, pemerintah menetapkan 100 kabupaten/kota sebagai daerah
prioritas penanganan kasus stunting di Indonesia. Penetapan 100 kabupaten/kota prioritas
tersebut ditentukan berdasarkan indikator jumlah balita stunting, prevalensi stunting, dan
tingkat kemiskinan. Penelitian ini bertujuan untuk mengetahui variabel-variabel yang
memengaruhi status daerah prioritas penanganan stunting di Indonesia agar pemerintah
lebih fokus dalam menangani kasus stunting di setiap daerah. Model yang digunakan
dalam penelitian ini adalah Geographically Weighted Logistic Regression (GWLR).
Untuk variabel respon, kategori 0 adalah daerah bukan prioritas penanganan stunting
(prevalensi stunting kurang dari rata-rata prevalensi stunting Indonesia tahun 2018
sebesar 32,01%) dan kategori 1 adalah daerah prioritas penanganan stunting (prevalensi
stunting lebih besar dari rata-rata prevalensi stunting Indonesia tahun 2018 sebesar
32,01%). Model Geographically Weighted Logistic Regression (GWLR) merupakan
pengembangan dari model regresi logistik dengan memperhitungkan pengaruh spasial.
Pengaruh spasial tersebut digambarkan melalui matriks pembobot di setiap lokasi
pengamatan sehingga menghasilkan pendugaan parameter model yang bersifat lokal
untuk setiap lokasi pengamatan. Metode penaksiran parameter yang digunakan adalah
metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot spasial adalah
fungsi pembobot kernel Fixed Gaussian dan Fixed Bisquare. Pada penelitian ini data
yang digunakan mengandung missing values sehingga diperlukan penanganan lebih
lanjut. Penanganan missing values yang digunakan pada penelitian ini adalah metode
imputasi data menggunakan Classification and Regression Tree (CART). Model GWLR
terbaik pada pemodelan kasus stunting di Indonesia tahun 2018 adalah model GWLR
dengan pembobot fungsi kernel Fixed Bisquare dengan nilai AIC sebesar 622,806477
dan akurasi klasifikasi model sebesar 0,7257.

Stunting is a condition of failure to thrive in children under five because of chronic
malnutrition so that the child is too short for his/her age. Stunting has bad effect on
children's growth and the quality of human resources in the future. To reduce the number
of stunting in Indonesia, in 2018, the government determined 100 districts/cities as
priority areas for handling stunting cases in Indonesia. The 100 priority districts/cities are
determined based on the number of stunting children, stunting prevalence, and poverty
level. This study aims to determine the variables that affect the status of priority areas for
stunting handling in Indonesia so the government can be more focused on handling
stunting cases in each region. The model used in this study is Geographically Weighted
Logistic Regression (GWLR) with 0 as the category of a non-priority area for handling
stunting cases (stunting prevalence is less than the average stunting prevalence of
Indonesia in 2018) and 1 as the category of a priority area for handling cases stunting (the
prevalence of stunting is greater than the average stunting prevalence of Indonesia in
2018). The average stunting prevalence of Indonesia in 2018 that used in this study is
32,01%. The Geographically Weighted Logistic Regression (GWLR) model is a
development of the logistic regression model which considers spatial influence. The
spatial influence is illustrated through a weighting matrix at each observation location to
produce an estimation of the local model parameters for each observation location. The
parameter estimation method used is the Maximum Likelihood Estimation (MLE) method
with the spatial weighting function is the Fixed Gaussian and Fixed Bisquare kernel
weighting function. There are missing values in the study data so Classification and
Regression Tree (CART) method used to handle the missing values. The results showed
that the best GWLR model on stunting cases modeling in Indonesia in 2018 is the GWLR
model with Fixed Bisquare kernel function weighting with AIC value of 622,806477 and
accuracy of model classification of 0,7257.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Love, Stephen F.
Auckland: McGraw-Hill, 1979
658.787 LOV i
Buku Teks SO  Universitas Indonesia Library
cover
Janice Diani Putri
"ABSTRACT
Utang swasta Indonesia mengalami pertumbuhan yang pesat pada dekade terakhir, hingga mencapai 49 dari total utang luar negeri Indonesia di akhir 2017. Hal ini disebabkan oleh semakin banyaknya perusahaan Indonesia yang menggunakan pembiayaan dari luar negeri. Kecenderungan perusahaan untuk meminjam uang dalam jumlah besar dari investor asing dapat meningkatkan produktivitas dan keuntungan perusahaan, tetapi di sisi lain juga dapat menyebabkan pembengkakan pada nilai utang perusahaan tersebut karena tren depresiasi nilai tukar yang terjadi di Indonesia. Skripsi ini menggunakan salah satu metode machine learning yaitu Support Vector Regression untuk mempelajari hubungan antara faktor-faktor terkait utang luar negeri dengan ketahanan suatu perusahaan, dan hasilnya akan dibandingkan dengan hasil yang diperoleh dari metode regresi data panel yang sudah sering digunakan untuk menganalisis masalah serupa. Penelitian ini menggunakan data dari laporan keuangan 189 perusahaan yang menjadi emiten di Bursa Efek Indonesia di tahun 2011 hingga 2017. Penelitian ini menunjukkan bahwa metode Support Vector Regression menghasilkan model dengan akurasi yang lebih baik daripada model yang dihasilkan metode regresi data panel. Secara umum kedua metode memberikan kesimpulan bahwa balance-sheet effect lebih dominan daripada competitiveness effect pada perusahaan-perusahaan Indonesia, dan sangat disarankan bagi perusahaan untuk meminimumkan besar utang luar negeri dan transaksi impor, serta sebisa mungkin meningkatkan ekspor.Kata kunci: Machine learning; Regresi data panel; Support Vector Regression; Utang luar negeri; Utang swasta.

ABSTRACT
Indonesian corporations have been borrowing large sums of money from foreign investors in the past decade, such that private debt ratio has reached 49 of Indonesia rsquo s total external debt by the end of 2017. This act of borrowing might improve the borrowing firms rsquo performance which leads to increase in profit, but in other hand it might result on debt value expansion, due to the exchange rate depreciation trend in Indonesia. This paper employs Support Vector Regression, a machine learning method, to study the relationship between factors that might affect corporate performance and compares the results with that of the conventional panel data regression method. The study was done using data from annual financial statements of 189 firms in Indonesia during 2011 2017. It is shown that the machine learning approach discussed in this study gave better accuracy than the previously employed panel data regression method. Both methods generally showed that balance sheet effect is more dominant than competitiveness effect in Indonesian corporations, and it is recommended for companies to minimize their foreign debts and imported purchases, and if possible, export more of their products. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dickson Dichandra
"Regresi kuantil adalah metode regresi yang menghubungkan kuantil dari variabel respon dengan satu atau beberapa variabel prediktor. Regresi kuantil memiliki kelebihan yang tidak dimiliki oleh regresi linier yaitu robust terhadap outlier dan dapat memodelkan data yang heteroskedastisitas. Regresi kuantil dapat diestimasi parameternya dengan metode Bayesian.
Metode Bayesian adalah alat analisis data yang diturunkan berdasarkan prinsip inferensi Bayesian. Inferensi Bayesian adalah proses mempelajari analisis data secara induktif dengan teorema Bayes. Untuk menaksir parameter regresi dengan inferensi Bayesian, perlu dicari distribusi posterior dari parameter regresi dimana distribusi posterior proporsional terhadap perkalian distribusi prior dan fungsi likelihoodnya. Karena perhitungan distribusi posterior secara analitik sulit untuk dilakukan jika semakin banyak parameter yang ditaksir, maka diajukan metode Markov Chain Monte Carlo (MCMC). Penggunaan metode Bayesian dalam regresi kuantil memiliki kelebihan yaitu penggunaan MCMC memiliki kelebihan yaitu mendapatkan sampel nilai parameter dari distribusi posterior yang tidak diketahui, penggunaan
yang efisien secara komputasi, dan mudah diimplementasikannya. Yu dan Moyeed (2001) memperkenalkan regresi kuantil Bayesian dengan menggunakan fungsi likelihood dari error yang berdistribusi Asymmetric Laplace Distribution (ALD) dan menemukan bahwa
meminimumkan taksiran parameter pada regresi kuantil sama dengan memaksimalkan fungsi likelihood dari error yang berdistribusi Asymmetric Laplace Distribution (ALD). Metode yang digunakan untuk menaksir parameter regresi kuantil adalah Gibbs sampling dari distribusi ALD yang merupakan kombinasi dari distribusi eksponensial dan Normal. Penaksiran parameter model regresi dilakukan dengan cara pengambilan sampel pada distribusi posterior
dari parameter regresi yang ditemukan dalam skripsi ini. Pengambilan sampel pada distribusi posterior dapat menggunakan metode Gibbs sampling. Hasil yang diperoleh dari Gibbs sampling berupa barisan sampel parameter yang diestimasikan. Setelah mendapatkan barisan sampel, barisan sampel dirata-ratakan untuk mendapatkan taksiran parameter regresinya. Studi kasus dalam skripsi ini adalah membahas pengaruh faktor risiko dari nasabah asuransi kendaraan bermotor terhadap besar klaim yang diajukan oleh nasabah.

Quantile regression is a regression method that links the quantiles of the response variable with one or more predictor variables. Quantile regression has advantages that linear regression does not have; it is robust against outliers and can model heteroscedasticity data.
The parameters of quantile regression can be estimated using the Bayesian method. The Bayesian method is a data analysis tool derived based on the Bayesian inference principle.
Bayesian inference is the process of studying data analysis inductively with the Bayes theorem. To estimate regression parameters with Bayesian inference, it is necessary to find the posterior distribution of the regression parameters where the posterior distribution is
proportional to the product of the prior distribution and its likelihood function. Since the calculation of the posterior distribution analytically is difficult to do if the more parameters are estimated, the Markov Chain Monte Carlo (MCMC) method is proposed. The use of the Bayesian method in quantile regression has advantages, namely the use of MCMC has the advantages of obtaining sample parameter values from an unknown posterior distribution,
using computationally efficient, and easy to implement. Yu and Moyeed (2001) introduced Bayesian quantile regression using the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) distribution and found that minimizing parameter estimates in quantile regression is the same as maximizing the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) distribution. The method used to estimate quantile regression parameters is Gibbs sampling from the ALD distribution, which is a combination
of the exponential and normal distributions. The estimation of the regression model parameters is done by sampling the posterior distribution of the regression parameters which is found in this thesis. Gibbs sampling method is used to sampling the posterior distribution.
The results obtained from Gibbs sampling are a sample sequence of estimated parameters.
After obtaining the sample sequences, the sample lines are averaged to obtain an estimated regression parameter. The case study in this thesis discusses the effect of risk factors from motor vehicle insurance customers on the size of claims submitted by customers.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>