Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133030 dokumen yang sesuai dengan query
cover
Agus Anwar
Depok: Fakultas Hukum Universitas Indonesia, 1994
TA3826
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jakarta: Pengayoman, 1993
344.046 5 IND l
Buku Teks SO  Universitas Indonesia Library
cover
B.Y. Eko Budi Jumpeno
"ABSTRACT
PENGENDALIAN PENCEMARAN UDARA DI WILAYAH DKI JAKARTA. Jakarta
adalah kota metropolitan seluas 650 km2 dengan penduduk 9.341.000 jiwa pada tahun 1996. Jumlah penduduk sebesar itu dengan mobilitas tinggi memiliki potensi untuk menimbulkan pencemaran udara. Hasil penelitian BAPEDAL dan LPM-ITB pada tahun 1992 menunjukkan bahwa sektor transportasi di DKI Jakarta memberikan sumbangan terbesar yaitu 67,1 % diikuti sektor industri sebesar 18.9 % untuk parameter pencemar berupa CO, SOx, NOX partikular, dan HC. Penelitian lainnya memberikan indikasi bahwa pertambahan kendaraan di Wilayah DKI Jakarta ialah 11.79 %. sedangkan penambahan panjang jalan hanya 2.5 %. Hal ini memberikan gambaran bahwa pencemaran udara terkait dengan sektor transportasi dan industri. Pemerintah DKI Jakarta melalui Biro Bina Lingkungan Hidup dan Kantor Pengkajian Perkotaan dan Lingkungan (sekarang BAPEDALDA) DKI Jakarta telah melaksanakan beberapa program yang terkait pengendalian pencemaran udara; misalnya Program Udara Bersih (PRODASIH). Kegiatan ini merupakan pelaksanaan amanat dalam UUD 1945, GBHN (1998-2003), REPELITA VI dan UU No.23/1997 tentang Pengelolaan Lingkungan Hidup. Sebagai peraturan pelaksanaan, Menteri Negara Kependudukan dan Lingkungan Hidup (sekarang Menteri Negara Lingkungan Hidup) dan Gubernur Kepala DKI Jakarta telah mengeluarkan beberapa surat keputusan yang mengatur pengendalian pencemaran udara. Pencemaran udara perlu dikendalikan karena udara yang tercemar menimbulkan dampak kesehatan seperti gangguan saluran pernafasan, gangguan metabotisme, gangguan pertumbuhan dan perkembangan sampai kepada kematian. Dampak pencemaran yang bersifat gtobal ialah timbulnya efek rumah kaca dan penipisan lapisan Ozon. Program pengendalian pencemaran udara yang sudah dicanangkan oleh Pemerintah Daerah sering mengalami kendala dalam pelaksanaannya. Kendala tersebut ialah tidak/belum adanya peraturan perundang-undangan yang mampu menampung permasalahan yang berkaitan dengan kebijakan pengendalian pencemaran udara, keterbatasan sarana dan sumber daya manusia, benturan kepentingan penanggung jawab kegiatan yang memiliki potensi mencemari udara dengan institusi pengendalian pencemaran udara (lingkungan) adanya pertimbangan ekonomi dan teknologi, belum adanya kesamaan persepsi di antara pihak-pihak yang terkait dengan penegakan hukum/peraturan di bidang pencemaran udara (lingkungan) serta masih lemahnya kelembagaan yang berkaitan dengan pengelolaan kualitas udara. Dengan melihat kendala-kendala tersebut maka diperlukan keterpaduan kegiatan di semua institusi di bawah Pemerintah DKI Jakarta dan masyarakat. penyamaan persepsi di antara pihak-pihak yang terkait dengan pecemaran udara. pengembangan kelembagaan di bidang pengelolaan lingkungan hidup . peningkatan kualitas sumber daya manusia para personil BAPEDAL Daerah (opeasional sekarang masih dilaksanakan oleh Biro BLH dan KPPL), mengusahakan ketersediaan dana dan pengenalan teknologi yang mampu menurunkan pencemaran udara santa dibarengi dengan penerapan kepastian dan penegakan hukum. Dengan upaya itu diharapkan setiap kebijaksanaan yang ditetapkan oleh Pemerintah DKI Jakarta dapat dilaksanakan secara efektif di lapangan.

"
vii, 84 pages : illustration ; 28 cm + appendix, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Indah Harlina
Depok: Fakultas Hukum Universitas Indonesia, 1998
TA3744
UI - Tugas Akhir  Universitas Indonesia Library
cover
Vera Aulia Dewi
"Pencemaran udara merupakan masalah menahun yang tak kunjung usai di DKI Jakarta. Pada tahun 2023, pencemaran udara di DKI Jakarta kembali menjadi sorotan publik, karena kualitas udara yang terus memburuk di kategori tidak sehat hingga beracun. Hal tersebut tentunya memberikan dampak negatif kepada masyarakat dan lingkungan. Sehingga dalam hal ini berbagai advokasi yang dilakukan oleh kelompok terdampak berusaha untuk terus meningkatkan awareness di kalangan masyarakat, dan menekan pemerintah agar segera mengatasi permasalahan tersebut. Namun, setelah berbagai upaya advokasi dilakukan, faktanya belum terjadi perubahan yang signifikan terhadap kualitas udara di DKI Jakarta. Sehingga peneliti ingin melihat sejauh mana kekuatan advokasi kebijakan yang sudah dijalankan oleh kelompok terdampak dalam usahanya untuk mengadvokasikan permasalahan pencemaran udara di DKI Jakarta. Di mana dalam proses menganalisis, peneliti menggunakan 4 dimensi dari teori Advocacy That Build Power. Lebih lanjut, penelitian ini menggunakan pendekatan kuantitatif dengan teknik pengumpulan data mixed method. Hasil dari penelitian menunjukkan bahwa kekuatan advokasi kebijakan terhadap isu pencemaran udara di DKI Jakarta sudah masuk ke dalam kategori “sedang” dapat terlihat dari 162 responden atau 53,3% yang mendukung hal tersebut. Kemudian dapat dicerminkan dari meningkatnya keterlibatan masyarakat dalam mengadvokasikan isu pencemaran udara di DKI Jakarta melalui berbagai strategi seperti kampanye, aksi, diskusi publik, dan menggugat permasalahan ke pengadilan. Hal pendukung lainnya juga dapat dilihat dari respons Pemprov DKI Jakarta dalam menangani permasalahan tersebut. Namun, memang permasalahan tersebut harus mendapatkan perhatian lebih, karena masih buruknya kualitas udara di DKI Jakarta beberapa waktu kebelakang, yang menandakan masih terdapat permasalahan yang harus diselesaikan. Oleh karena itu, untuk menangani permasalahan pencemaran udara di DKI Jakarta perlu untuk membangun kerja sama dan komitmen dari seluruh aktor yang terlibat, sehingga tercipta kualitas udara yang baik di DKI Jakarta.  

Air pollution is a chronic problem in DKI Jakarta. In 2023, air pollution in DKI Jakarta was again in the public spotlight, as air quality continued to deteriorate in the unhealthy to toxic category. This certainly has a negative impact on society and the environment. So in this case, various advocacy carried out by affected groups tried to continue to increase awareness among the public, and put pressure on the government to immediately overcome these problems. However, after various advocacy efforts have been made, the fact is that there has not been a significant change in air quality in DKI Jakarta. So the researcher wants to see the extent of the strength of policy advocacy that has been carried out by affected groups in their efforts to advocate for air pollution problems in DKI Jakarta. In the process of analyzing, researchers used 4 dimensions of the Advocacy That Build Power theory. Furthermore, this research uses a quantitative approach with mixed method data collection techniques. The results of the study show that the strength of policy advocacy on the issue of air pollution in DKI Jakarta has fallen into the "medium" category, it can be seen from 162 respondents or 53.3% who support this. Then it can be reflected in the increasing involvement of the community in advocating the issue of air pollution in DKI Jakarta through various strategies such as campaigns, actions, public discussions, and suing the problem to the court. Other supporting things can also be seen from the response of the DKI Jakarta Provincial Government in dealing with these problems. However, the problem must get more attention, because the air quality in DKI Jakarta is still poor some time back, which indicates that there are still problems that must be resolved. Therefore, to deal with air pollution problems in DKI Jakarta, it is necessary to build cooperation and commitment from all actors involved, so as to create good air quality in DKI Jakarta. "
D: Fakultas Ilmu Administrasi Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harry Mufrizon
"Pertumbuhan adalah hal yang menarik dalam kebijakan ekonomi dan lingkungan untuk menuju pembangunan berkelanjutan dimana dibutuhkan indikator-indikatornya sebagai sumber informasi. Perubahan ekonomi di Indonesia, membuat indikator keberlanjutan sangat.penting untuk menelaah keluaran di bidang lingkungan yang berkaitan dengan peningkatan konsumsi, pergeseran kondisi pasar, dan makin terbukanya system perdagangan dan investasi. Sehingga dibutuhkan kebijakan lingkungan yang mendukung keluaran lingkungan. Telah menjadi pandangan umum bahwa peningkatan konsumsi lebih lanjut. akan memberikan tekanan terhadap lingkungan, tetapi perlu diketahui pula pada tahap apa sehingga peningkatan tersebut mengharuskan dibutuhkannya proteksi terhadap lingkungan.
Pada sisi lain, data indikator lingkungan yang dibutuhkan dalam melakukan telaah sangat jarang, data yang di dapat dari Biro Pusat Statistik Indonesia memperlihatakan data yang menyebar dan berbeda¬beda, ketiga dibutuhkan data untuk tingkat yang lebih rendah, data makin sulit. Kondisi data yang dihadapai adalah pertama adalah tidak komplit, kedua masih banyak hal-hal panting yang belum terukur dan ketiga masih sedikitnya penelitian sebelumnya.
Dengan data yang diperoleh, penelitian ini mencoba menelaah hubungan antara polusi udara dengan pembangunan ekonomi, dengan mengukur efek dari pertumbuhan ekonomi terhadap tiga indikator pencemaran udara yaitu HC, NOx dan CO. sedangkan indikator bagi pertumbuhan ekonomi menggunakan 7 variabel yang menggambarkan peningkatan konsumsi, pergeseran kondisi pasar, dan makin terbukanya system perdagangan dan inverstasi.
Seluruh data merupakan gabungan dan data kerat lintang (antar individu/cross section) yaitu 26 propinsi di Indonesia dan data urut waktu (time series) yaitu 12 (1989-2000) tahun observasi sehingga digunakan metode estimasi panel data dengan teknik fixed effect model. Sehingga diharapkan mampu menjelaskan hubungan pertumbuhan ekonomi akan memberikan tekanan terhadap pencemaran udara.
Hasil studi ini menunjukkan kondisi pencemaran udara sangat tergantung dari perkembangan waktu, pencemaran udara masih akan terus meningkat. Variabel anggaran belanja lingkungan tidak mendukung upaya pengurangan kerusakan pencemaran udara karena memang kecilnya pengeluaran pemerintah untuk bidang pencemaran udara atau tidak tepat sasaran dari anggaran biaya tersebut. Bedasarkan hasil regresi menunjukan beberapa variabel yang secara nyata turut menyebabkan peningkatan pencemaran udara, sedangkan sebagian lainnya belum memberikan dampak yang negatif terhadap pencemaran udara tetapi perlu diwaspadai, Secara keseluruhan hasil studi ini telah dapat menjawab pertanyaan dan sesuai dengan hypothesis yang diajukan."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2003
T20050
UI - Tesis Membership  Universitas Indonesia Library
cover
Khresno Yuniharto
"ABSTRAK
Pencemaran udara yang diakibatkan oleh emisi gas buang kendaraan bermotor akan menurunkan kualitas udara. Keadaan ini terjadi di kota Jakarta dengan meningkatnya jumlah kendaraan bermotor sehingga memperburuk kualitas udara. Karbon monoksida (CO) merupakan salah satu dari polutan beracun yang berasal dari emisi gas buang kendaraan bermotor di kota-kota besar. Salah satu upaya yang dilakukan untuk mengantisipasi dan mencegah dampak negatif dari pencemaran udara tersebut adalah mengembangkan Ruang Terbuka Hijau (RTH). Meskipun demikian, saat ini informasi data spasial tata ruang yang terpadu antar organisasi terkait dalam menentukan lokasi RTH belum tersedia. Tujuan penelitian ini adalah membuat suatu model simulasi dengan menggunakan teknologi Sistem Informasi Geografis (SIG) untuk menentukan lokasi RTH berdasarkan aspek pencemaran udara dengan menggunakan parameter karbon monoksida (CO) di Provinsi DKI Jakarta. Hasil akhir dari penelitian ini adalah memberikan informasi spasial dalam bentuk peta yang informatif tentang RTH, serta terungkapnya daerah-daerah prioritas pengembangan RTH berdasarkan aspek pencemaran karbon monoksida (CO) di Provinsi DKI Jakarta."
2007
T39435
UI - Tesis Membership  Universitas Indonesia Library
cover
Cecep Aminudin
"Pencemaran udara dapat disebabkan oleh berbagai sumber, antara lain dari aktifitas industri. Untuk mengatasi persoalan pencemaran udara, termasuk dari industri, pemerintah di berbagai negara, termasuk di Indonesia, mengeluarkan berbagai macam kebijakan untuk mengendalikannya. Namun demikian, penelitian mengenai efektivitas dari kebijakan yang telah ditetapkan masih sangat kurang dilakukan. Oleh karena itu, tujuan dari penelitian ini adalah berusaha untuk: (1) mengetahui efektivitas kebijakan pengendalian pencemaran udara industri di DKI Jakarta, Indonesia, (2) mengetahui efektivitas kebijakan pengendalian pencemaran udara industri di NSW, Australia. (3)mengetahui perbandingan efektivitas kebijakan pengendalian pencemaran udara industri di DKI Jakarta dengan di New South Wales.
Penelitian ini menggunakan pendekatan expost facto terhadap data sekunder berupa laporan-laporan badan-badan pemerintah di kedua negara yang diterbitkan antara tahun 1990 - 2006 dan hasil-hasil penelitian lain yang relevan. Analisa dilakukan secara kuantitatif dan kualitatif untuk menentukan nilai (1-5) dari masing-masing parameter efektivitas kebijakan pengendalian pencemaran udara industri. Parameter untuk mengukur efektivitas kebijakan terdiri dari parameter produk kebijakan (policy output), parameter hasil antara kebijakan (intermediate outcomes) dan parameter hasil akhir kebijakan (end outcomes). Nilai rata-rata dari semua parameter kemudian dimasukan dalam skala efektivitas untuk mengetahui tingkat efektivitas kebijakan pengendalian pencemaran udara industri dan masingmasing lokasi penelitian. Kategori tingkat efektivitas yang ditetapkan dalam penelitian ini, mulai dari yang terendah, adalah: tidak efektif, belum efektif, potensial efektif, cukup efektif, sangat efektif.
Dengan sistem negara Indonesia yang berbentuk kesatuan, kebijakan pengendalian pencemaran udara industri yang berlaku di Jakarta berada pada level nasional dan level daerah. Kebijakan pengendalian pencemaran, termasuk pencemaran udara industri, dimulai pada tahun 1980-an. Instrumen kebijakan pengendalian pencemaran udara industri di tingkat nasional maupun di tingkat daerah hampir lama dan lebih menitikberatkan pada pendekatan atur dan awasi atau command and control. Sementara itu, pendekatan ekonomi belum banyak dikembangkan baik di level nasional maupun di level daerah. Evolusi pengaturan pencemaran di Indonesia bergerak ke arah desentralisasi dengan penguatan peran pemerintah daerah dalam pengendalian pencemaran danpenjabaran kebijakan pengendalian pencemaran untuk berbagai macam media termasuk udara.
Sementara itu, dengan sistem negara Australia yang berbentuk federal, di NSW kebijakan pengendalian pencemaran udara industri lebih banyak berada di tangan negara bagian. Sedangkan pemerintah federal hanya mengembangkan kebijakan umum seperti ketentuan tentang baku mutu udara ambien. Kebijakan pengendalian pencemaran udara, termasuk dari sumber industri, dimulai pada tahun 1960-an. Selain itu, instrumen ekonomi dalam bentuk load based licensing juga sudah mulai dikembangkan di tingkat negara bagian NSW disamping penyempurnaan pada pendekatan command and control. Evolusi pengaturan pencemaran udara industri di Australia, khususnya di NSW bergerak ke arah integrasi pengendalian pencemaran antara sate jenis media dengan media lainnya, dan mulai berperannya pemerintah federal dalam upaya pengendalian pencemaran.
Terkait dengan tujuan penelitian, dari studi ini diketahui bahwa di DKI Jakarta produk kebijakan (policy output) berupa pendayagunaan berbagai macam instnunen kebijakan (mixed policy instrument) masih lemah, kondisi basil antara kebijakan (intermediate outcomes) berupa perilaku penaatan industri terhadap kebijakan masih rendah dan hasil akhir kebijakan (end outcomes) berupa beban emisi dari industri dan kualitas udara ambien di daerah industri juga masih belum baik. Sedangkan di New South Wales, produk kebijakan (policy output) berupa pendayagunaan berbagai macam instrumen kebijakan (mixed policy instrument) cukup kuat, kondisi hasiI antara kebijakan (intermediate outcomes) berupa perilaku industri terhadap kebijakan cukup tinggi dan hasil akhir kebijakan (end outcomes) berupa beban emisi dari industri dan kualitas udara ambien juga cukup baik.
Dari hasil penelitian ini dapat diambil kesimpulan: (1)kebijakan pengendalian pencemaran udara industri di DKI Jakarta termasuk dalam kategori belum efektif (2)kebijakan pengendalian pencemaran udara industri di New South Wales termasuk kategori potensial efektif. (3)kebijakan pengendalian penemaran udara industri di New South Wales lebih efektif dibanding kebijakan pengendalian pencemaran udara industri di DKI Jakarta.
Untuk mengurangi kesenjangan tingkat efektivitas di Jakarta dibandingkan di New South Wales perlu dilakukan perbaikan strategi kebijakan, penguatan kapasitas kelembagaan pemerintah, penguatan upaya penegakan hukum, serta perhatian politik yang cukup dari penentu kebijakan.

The main sources of urban air pollution are come from transportation and industrial activity. To overcome the problem, the governments in the world are trying to formulate and implement policy to control industrial air pollution in various policy approaches. However, the research about the effectiveness of that policy is still rare. The aims of this research are: (1) To know about the effectiveness of industrial air pollution control policy in Jakarta, Indonesia, (2) To know about the effectiveness of industrial air pollution control policy in New South Wales, Australia. (3) To compare the effectiveness of industrial air pollution control policy in Jakarta and New South Wales.
This research is based on ex-post facto approach which uses secondary data from the report of government agency in bath countries that issued between 1990 - 2006 and another research report which are relevant with this thesis. The analysis is based on quantitative and qualitative method to find the value for each research indicator in 1-5 scale. The average value fromall indicator then classified into the effectiveness scale index to know the degree of the effectiveness. This research divide the effectiveness scale, from lower to higher, are: not effective, not yet effective, potentially effective, sufficiently effective and very effective.
With the Indonesian unitary state system, the air pollution control policy is on the hand of local as well as the central government. The pollution control policy, including pollution from industry, was begin in 1980-s. The policy instrument that had been applied in national and local level are very similar and give more emphasize on command and control approach. Meanwhile, the economic instrument are still under developed. The evolution of pollution control in Indonesia are moving from centralized to decentralized system and the empowering of local government role in protecting environment Indonesia also at the stage of elaborating the environment protection policy in various kind of pollution media, including air pollution, from general principle and regulation of environmental protection.
Meanwhile, with the Australian federal system of the state, air pollution control policy in NSW is heavily on the hand of the state. While the federal government only developing general policy such as ambient air quality standard. The air pollution control policy in Australia was begin in 1960-s. The economic instrument in the form of load based licensing are developed in NSW since 1997 beside the reformation of the enforcement system. The evolution of pollution control in Australia, especially in NSW, are moving from media specific to more integrated and multimedia approach. Australia also at the stage of empowering the federal government to take responsibility for controlling pollution especially on national significant pollution issues.
Related with the objective of the research, this study found that, in Jakarta, the utilization of mixed policy instrument as a policy output are weak, the condition of the compliance behavior of industry as an intermediate policy outcome is low and the emission load and the ambient air quality in industrial area as end policy outcomes is not so good. Meanwhile, in New South Wales, the utilization of mixed policy instrument as a policy output are strong, the condition of the compliance behavior of industry as an intermediate policy outcome is high and the emission load and the ambient air quality in industrial area as end policy outcomes are relatively better than in Jakarta.
The conclusion of this research are, generally the effectiveness level of industrial air pollution control policy in Jakarta are not yet effective, while the effectiveness level of industrial air pollution control policy in New South Wales are potentially effective. So the effectiveness of industrial air pollution control policy in New South Wales is one level higher than in Jakarta.
To fill the effectiveness gap in Jakarta which is lower than in New South Wales, it is a need to reform the policy strategy, strengthening institutional capacity, strengthening law enforcement efforts, and adequate political support from the policy makers."
Depok: 2006
T17904
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulistyoweni Widanarko
"ABSTRAK
Industri kecil (IK) electroplating yang dijadikan studi adalah IK-electroplating yang berada di wilayah DKI Jakarta. Untuk pengembangan teknologi pengolahan, sebagai upaya dalam penanggulangan dampak pencemar, dilakukan pendekatan penelitian dengan perolehan data primer dan sekunder, yang meliputi kegiatan pendataan penyebaran industri kecil electroplating di wilayah DKI Jakarta, observasi serta analisis proses produksi, pengambilan dan pemeriksaan sample air limbah, analisis karakteristik air limbah yang dihasilkan serta percobaan secara fisik-kimia di laboratorium. Hasil dari uji coba tersebut digunakan sebagai dasar penyusunan konsep bangun pengolahan limbah industri kecil electroplating tersebut.
Jenis industri kecil electroplating di wilayah DKI Jakarta, adalah jenis pelapisan Nikel-Krom, pelapisan Tembaga - Nikel Krom dan pelapisan Seng. Jumlah IK Electroplating yang didata berjumlah 37 buah yang tercatat di Kanwil DInas Perindustrian menyebar di daerah pemukiman dan daerah komersial. Jumlah terbsear dari penyebaran industri kecil electroplating berada di wilayah Jakarta Barat (±70%), dengan jenis pelapisan Nikel-Krom yang dominan.
Karakteristik air limbah yang dihasilkan secara kualitas, umumnya ditandai dengan pH yang rendah sampai netral, kesadahan tinggi, COD yang rendah sampai sedang, DHL yang tinggi serta kandungan logam berat Pb, Cu, Cd, Cr, Ni, dan Zn. Konsentrasi tingkat pencemar yang diukur dengan nilai COD bervariasi dari 108 mg/l sampai 14033 mg/l. Perbandingan BOD Terhadap COD yang umumnya rendah, hal ini menunjukkan rendahnya fraksi organik yang terbiodegrasi, sehngga penanganan air limbahnya yang tepat adalah dengan proses pengolahan secara fisik - kimiawi.
Percobaan pengolahan dilakukan terhadap air limbah Nikel-Krom yang merupakan jenis industri kecil electroplating yang tersebar di wilayah DKI Jakarta. Hasil percobaan disajikan dalam tabel 1 dan 2 dan gambar 01. Untuk mencapai kualitas efluen air limbah yang ditetapkan di DKI Jakarta, diperlukan pengolahan kimia fisis dengan dosis optimum koagulan FeSO4 (99%) sebesar 1500 mg/l, Ca(OH)2 teknis 2% sebesar 1360 mg/l, H2SO4 1N sebanyak 15 ml/500 ml sampel. Koagulan air diperlukan sebesar 0,5 ml/500 ml dengan pengadukan 60 rpm selama 15 menit. Periode waktu pengendapan 30 menit dengan produksi lumpur 99 ml/500 ml sampel atau 20% dari limbah yang diolah (kadar air ± 95 - 98%). Kondisi optimal untuk reduksi Cr adalah pada pH = 2,0, sedangkan untuk terbentuknya endapan pada pH 8-9,50.
Untuk sistem pengolahan limbah IK-EP tersebut disarankan menggunakan sistem terpusat yaitu limbah dari beberapa industri digabung menjadi satu dengan menggunakan sistem MOduk. Namun jika mempunyai halaman dapat mengolah sendiri. Untuk kapasistas 0.5 m3/hari (dengan 4x "run" perhari) dibutuhkan 1 bak penangkap minyak/detergen, bal ekualisasi dan 1 drum bak koagulasi/flokulasi dan sedimentasi. Luas area yang dibutuhkan 3x3m2. Rancang Bangun Teknologi Pengolahan Limbah Industri Kecil Electroplating tertera pada gambar 02.

ABSTRACT
The object study focused on small electroplating industries located in DKI Jakarta area. To overcome the impact of pollution, we try to develop technology of waste treatment of small electroplating industries. Firstly, we have mad an observation covered the primary data as well as secondary data about small electroplating industry which spread throughout the DKI Jakarta area. Then, we observed the process of production, sampling the waste water, analysed the characteristic of waste water, and the test is managed physically as well as chemically in Laboratorium. The result of these observations is used to prepare the concept of the waste water treatment plant of small electroplating industry.
There are about 37 electroplating industries registered in Kantor Wilayah Dinas Perindustrian DKI (Region office in the Industrial Department) which are spread out in the human settlement area and commercial area. Those are Ni-Cr plating, Cu-Ni-Cr plating and Zn Plating. The most dominan is the Ni-Cr-plating (±70%) located in west java.
The quality of waste water produced by these electroplating industries generally characterized by the low up to normal pH, very high hardness, high conductivity, COD low slightly medium, and contained metal such as Pb, Cu, Cd, Cr, Ni, and Zn. The pollution is generally above average. The level of pollution indicated by COD varied considerably from 108 mg/l to 14033 mg/l.
.
The ratio BOD/COD generally low that indicates biodegradation of organic fraction is low. Therefore the proper method to treat the waste water is physically as well as chemically.
The result of the test for treating the electroplating waste water are presented in tabel 1 and tabel 2, figure 01. In order to meet the effluent standard of DKI Jakarta, it is needed to treat the waste water chemically and physically. The optimal dosage of coagulant FeSO4, (99%) 1500 mg/l Ca(OH)2 2% is 360mg/l, H2SO4 1 N is 15 ml/500 ml sampling.
The coagulant aid needed is 0,5 mg/500 ml water mixed in 60 rpm in 15 minutes. The precipitation periode is 30 minutes and it produces sludge 99 ml/500 ml or 20% treated water (the water content in between 95-8%). The optimum condition of reducing Cr is in pH 2,0 : whilst the pH for forming sediment are in the range pH 8-9,50.
For waste water treatment of electroplating it is suggested to use central system by mixing them up and use modul system. However if they have enough land they may treat or process the waste by their ow. For a capacity of 0.5 m3/day with 4 x run per day, one needs to have grease/oil trap, equalization tank, coagulation flocculation & sedimentation tank in one drums. A space of 3x3 m2 is needed. The construction drawing presented in figure 0,2."
Depok: Fakultas Teknik Universitas Indonesia, 1993
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Ani Iryani
"Kualitas udara di wilayah industri pada umumnya menunjukkan kecenderungan meningkatnya polusi yang disebabkan adanya emisi gas dari aktivitas industri dan transportasi. Jenis dan jumlah emisi atau pencemar udara bergantung pada jenis dan atau jumlah industri yang ada di wilayah itu. Pada umumnya pencemar udara yang berasal dari industri dan transportasi berupa partikel debu dan gas-gas seperti oksida nitrogen (NOx), oksida belerang (SOx), karbonmonoksida (CO), dan hidrokarbon (HC).
Emisi gas dari udara dapat langsung masuk ke badan air atau terbawa oleh air hujan dan meresap melalui tanah ke badan air. Gas-gas buang yang mengandung oksida nitrogen dan oksida sulfur (NOx dan SOx) dapat bereaksi dengan molekul-molekul air di udara membentuk asam sulfat (H2SO4) dan asam nitrat (HNO3) kemudian turun ke bumi sebagai hujan asam. Melalui sistem rembesan dalam tanah (ground wafer cycle), hujan asam ini berpengaruh terhadap kualitas air sumur.
Daerah Cibinong-Citeureup-Gunung Putri dengan luas wilayah 36,42 km2 merupakan contoh wilayah industri yang padat transportasi dan banyak aktivitas industrinya. Terdapat lebih dari 13.748 kendaraan bermotor dan 228 industri berskala besar dan sedang yang ada di Kecamatan Cibinong-Citeureup dan Gunung Putri (BPS Kab. Bogor, 2000). Jenis industri yang ada meliputi industri rumah tangga, farmasi dan obat-obatan, tekstil, kimia, otomotif, dan semen.
Berdasarkan data sebelumnya (tahun 1999), pH rata-rata air hujan di wilayah Cibinong-Citeureup adalah 5,07. Hal ini menunjukkan bahwa telah terjadi hujan asam di wilayah tersebut. Kualitas air sumur penduduk di wilayah Cibinong-Citeureup juga rendah. Berdasarkan penelitian sebelumnya, diperoleh data bahwa pH rata-rata air sumur di wilayah Cibinong-Citeureup 5,09 (tahun 1995) dan turun menjadi 4,63 pada tahun 1999.
Untuk mengetahui apakah kualitas udara berpengaruh pada kualitas air hujan dan apakah kualitas air hujan memang berpengaruh pada kualitas air sumur, maka dilakukan penelitian dengan mengukur parameter-parameter kunci. Penelitian ini bertujuan untuk: (a) mengetahui kualitas air hujan di wilayah industri Cibinong-Citeureup-Gunung Putri dan wilayah pembanding, dengan mengukur konsentrasi ion nitrat (NO3-), ion sulfat (S042 ), dan keasaman (pH);
(b) mengetahui kualitas air sumur penduduk wilayah industri Cibinong-Citeureup-Gunung Putri dan wilayah pembanding, dengan mengukur konsentrasi ion nitrat (NO3-), ion sulfat (SO42), keasaman (pH), logam Fe, dan kesadahan/CaCO3;
(c) mengetahui hubungan antara derajat keasaman (pH) dengan konsentrasi logam besi (Fe) dalam air sumur; dan (d) mengetahui pengaruh pencemaran udara yang berasal dari kualitas air hujan terhadap kualitas air sumur.
Hasil penelitian ini diharapkan dapat: (a) memberikan informasi mengenai kualitas air hujan dan air sumur di wilayah industri Cibinong-Citeureup-Gunung Putri terutama kepada PEMDA setempat, industri yang mencemari, dan masyarakat/penduduk di wilayah itu; (b) memberikan informasi mengenai bahaya pencemaran terhadap badan air terutama air sumur yang digunakan untuk keperluan rumah tangga kepada masyarakat/penduduk di wilayah penelitian, serta memberikan solusi untuk pengolahan air agar dapat dipakai untuk air minum.
Hipotesis yang diajukan adalah: (a) terdapat perbedaan kualitas air hujan dari wilayah industri Cibinong-Citeureup-Gunung Putri dengan wilayah pembanding; (b) terdapat perbedaan kualitas air sumur penduduk dari wilayah industri Cibinong Citeureup-Gunung Putri dengan wilayah pembanding, dan (c) terdapat hubungan antara derajat keasaman (pH) dengan konsentrasi logam besi (Fe) dalam air sumur.
Penelitian dilakukan dengan metode survei dan expost facto, dimana sampel air hujan diambil dari 14 titik lokasi penelitian dan air sumur diambil dari sumur-sumur penduduk yang berada pada lokasi yang sama dengan pengambilan air hujan.
Parameter pH (derajat keasaman), daya hantar listrik (DHL), dan Total Dissolved Solids/total padatan terlarut (TDS) diukur langsung di lapangan, sedangkan pengukuran konsentrasi N03 (nitrat), S042 (sulfat), logam Fe (besi), dan kesadahan (CaCO3) dilakukan di Laboratorium Kimia, Fakultas MIPA-Universitas Pakuan Bogor.
Data penelitian terdiri atas data primer dan data sekunder. Data primer diperoleh dari pengukuran secara langsung di lapangan dan di laboratorium. Data sekunder diperoleh dari penelitian sebelumnya, studi pustaka, instansi terkait, dan dari sumber-sumber lain. Data primer dan sekunder ini kemudian dianalisis secara deskrptif dan dilakukan uji statistik Two-Independent-samples Test untuk menguji perbedaan kualitas air hujan dan air sumur di wilayah industri dan wilayah pembanding, dan uji Bivariate correlation, utuk melihat hubungan antara derajat keasaman (pH) dengan konsentrasi logam besi (Fe) dalam air sumur. Berdasarkan hasil penelitian dapat disimpulkan bahwa:
(a)Air hujan untuk wilayah industri mempunyai nilai rata-rata derajat keasaman (pH) 4,47; kadar nitrat (NO3) 3,3302 mg/L; sulfat (SO42) 3,5806 mg/L, sedangkan untuk wilayah pembanding, nilai rata-rata derajat keasaman (pH) adalah 6,13; kadar nitrat (NO3) 0,0283 mg/L dan sulfat (SO42-) 0,0079 mg/L. Jadi pada tingkat kepercayaan 95% secara statistik diperoleh nilai Z hitung (-2,58 untuk pH, -2,575 untuk S042-, dan -2,569 untuk N03), sehingga terdapat perbedaan kualitas air hujan dari wilayah industri dengan wilayah pembanding untuk parameter derajat keasaman (pH), kadar nitrat (NO3), dan sulfat (SO42-);
Air sumur penduduk di wilayah industri mempunyai nilai rata-rata derajat keasaman (pH) 4,11; kadar nitrat (NO3-) 6,19 mg/L; sulfat (SO42) 5,44 mg/L, besi (Fe) 0,27 mg/L, dan kesadahan (CaCO3) 30,10 mg/L sedangkan untuk wilayah pembanding, nilai rata-rata derajat keasaman (pH) 6,70; kadar nitral (NO3-) 0,4011 mg/L; sulfat (SO42) 1,6599 mg/L, besi (Fe) 0,3508 mg/L, dan kesadahan (CaCO3) 34,30 mg/L. Jadi pada tingkat kepercayaan 95% secara statistik diperoleh nilai Z hitung (-2,569 untuk pH, -2,260 untuk S042-, -2,569 untuk N03, -0,584 untuk Fe dan -0,857 untuk Ca C03), maka terdapat perbedaan kualitas air sumur penduduk dan wilayah industri dengan wilayah pembanding untuk parameter derajat keasaman (pH), kadar nitrat (NO3-), dan sulfat (S042), tetapi tidak terdapat perbedaan untuk parameter kandungan besi (Fe) dan kesadahan (CaCO3);(c} Nilai koefisien korelasi (r) antara derajat keasaman (pH) dengan konsentrasi logam besi (Fe) adalah sebesar -0,976. Jadi terdapat hubungan negatif yang cukup erat antara pH dengan konsentrasi besi (Fe) dalam air sumur. Makin rendah pH (makin asam), konsentrasi besi makin tinggi.
Jadi kesimpulan umum dari penelitian ini adalah: Pencemaran udara yang berasal dari air hujan berpengaruh terhadap kualitas air sumur.
Selanjutnya disarankan untuk mengadakan penelitian lanjutan untuk menentukan besarnya persentase distribusi dari sumber bahan pencemar (industri/pertanian), kepadatan penduduk, jenis/kondisi tanah dan akibat yang berpengaruh terhadap kualitas air sumur. Hal ini penting untuk mengetahui faktor yang paling berpengaruh terhadap kualitas air sumur dan menentukan prioritas dalam pengendalian pencemaran air sumur. Untuk sumur-sumur yang mempunyai derajat keasaman tinggi (nilai pH rendah), maka untuk menaikkan nilai pH bisa diberikan CaO (kapur). Hal ini pemah diteliti sebelumnya dimana untuk menaikkan pH satu liter air sumur dari 5,732 menjadi 7,00 (pH netral), jumlah CaO yang diperlukan adalah 0,0204 gram.

The Influence of Air Pollution To The Quality Of Well Water(Case Study: Well Water Used by Population of the Cibinong-Citeureup-Gunung Putri Industrial Districts)Generally, the air quality in the industrial districts indicates the increase of pollution due to the existence of gas emission coming from industrial and transportation activities. The type and the number of emission or air pollutant will depend on the type and or the quantity of industries located in respective district. In general, air pollutant which comes from industry and transportation consists of dust particles and gasses such as nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), and hydrocarbons (HC).
Gas emission from the air could directly come to the body of water or be brought by rainwater and then absorbed to the body of water through the ground. The exhausts that contain nitrogen oxides and sulfur oxides (NOx and SOx) could react with water molecules in the air to form sulfuric acid (H2SO4) as well as nitric acid (HNO3), afterwards they fall to earth as an acid rain. Through the ground water cycle system, this acid rain influences the quality of well water.
The Cibinong-Citeureup-Gunung Putri districts with area of 36.47 km2 are the example of industrial districts that have massive transportation and have many industrial activities. There are more than 13,748 motor vehicles and 228 large as well as medium scale industries which are located in Cibinong-Citeureup-Gunung Putri sub-districts (BPS [Central Bureau of Statistics] of Bogor Regency, year 2000). The industries available are including household, pharmaceutical and medicines, textile, chemical, automotive, and cement industries.
Base on previous data year of 1999, the average of the acidity (pH) of rainwater in Cibinong-Citeureup districts was 5.07. This indicates that there has been an acid rain occurred on these districts. The quality of well water used by population of Cibinong-Citeureup becomes worst. Based on the previous research, the average of acidity (pH) of well water in the Cibinong-Citeureup districts was 5.09 (year 1995) and it decreased to 4.53 in 1999. In order to find out whether the air quality gives influence to the quality of rainwater and whether the quality of rainwater really gives influence to the well water, a research it needed by measuring the key parameters.
This research has purposes to: (a) find out the quality of rainwater in the Cibinong-Citeureup-Gunung Putri industrial districts as well as in the reference district by measuring the concentration of nitrate ion (NO3-), sulfate ion (SO42'), and acidity (pH); (b) find out the quality of well water used by population in Cibinong-Citeureup-Gunung Putri industrial districts as well as the quality of well water in the reference district by measuring the concentration of nitrate ion (N03), sulfate ion (SO42-), acidity (pH), Fe metal, and hardnesslCaCO3; (c) to find out the corelation between degree of acidity (pH) and concentration of iron metal (Fe) in the well water; and (d) to find out the influence of air pollution which comes from the quality of rainwater to the quality of well water.
The output of research hopefully could: (a) gives information about the quality of rainwater and the quality of well water in Cibinong-Citeureup-Gunung Putri industrial districts to the respective local government (PENIDA), all industries who tend to create pollution as well as society / population of those districts; (b) gives information to the society / population in the research location regarding the danger of pollution to the body of water, mainly the domestic well water, and also gives a solution about the treatment for the water that would use as a drinking water.
The proposed hypothesis was: (a) there is difference between the quality of rainwater in the Cibinong-Citeureup-Gunung Putri industrial districts and that of the reference district; (b) there is difference between the quality well water of population in Cibinong-Citeureup-Gunung Putri industrial districts and that of the reference district; (c) there is a correlation between the degree of acidity (pH) and the concentration of iron (Fe) in the well water.
Research is carried out by using a survey and ex post facto methods where the samples of rainwater were collected from 14 research locations, while sample of well water were collected from the residential wells at the same location whit that of samples of rainwater were collected.
Degree of acidity (pH), electric conductivity (DHL), and total dissolved solids (TDS) parameters were measured directly on the spot, while concentration of N03 (nitrate), SO4 (sulfate), Fe (iron), and hardness (CaCO3) were analyzed at the Laboratory of Chemical, Faculty of Mathematics and Natural Sciences (MlPA) University of Pakuan, Bogor. Research data consist of primary and secondary data. Primary data were obtained by direct measurement on the spot and at the laboratory. Secondary data were obtained from previous research, bibliography (references), related institutes, as well as other sources of information. These primary .and secondary data were, then analyzed descriptively and statistically with Two-Independent-Samples Test to examine the difference of rainwater and well water quality in the industrial districts and the reference district. One more test called Bivariate Correlation is done in order to see the correlation between the degree of acidity (pH) and the concentration of iron (Fe) in the well water.
Research conclusions were:
(a) Rainwater in the industrial districts has average value of acidity degree (pH) of 4.47; nitrate (NO3-) content of 3.3302 mg/L; sulfate (SO42-) content of 3.5806 mg/L, while rainwater in the reference district has the average value of acidity degree (pH) of 6.13; nitrate (NO3) content of 0.0283 mg/L and sulfate (SO42-) content of 0,0079 mg1L. Thus, at 95% level of confidence, statistically it was obtained the calculated Z value (-2.58 for pH, -2.575 for S042-, and -2.569 for N03-), so that there was a difference between the quality of rainwater in the industrial districts and that the reference district for the parameter of degree of acidity (pH), nitrate (NO3-), and sulfate (SO42') content;
(b)Well water used by population of the industrial districts has average value of acidity degree (pH) of 4.11; nitrate (NO3') content of 6.19 mg/L; sulfate (50422') content of 5.44 mg/L,; iron (Fe) content of 0.27 mg/L; and hardness (CaCO3) of 30.10 mg/L, while well water in the reference district has the average value of acidity degree (pH) of 6.70; nitrate (NO3-) of 0.3508 mg/L; and hardness (CaCO3) of 4.30 mg/L. Thus, at 95% level of confidence, statistically it was obtained the calculated Z value (-2.569 for pH, -2.260 for 5042-, -2.569 for NC3-, -0.584 for Fe and -0.857 for CaCO3). So that there was a difference between the quality of well water of the industrial districts and that of the reference district for the parameter of degree of acidity (pH), nitrate (NO3-) content and sulfate (SC42..) content, but there is no significant difference for the parameter of iron (Fe) content and hardness (CaCO3);
(c) the value of correlation coefficient (r) between the degree of acidity (pH) and the concentration of iron (Fe) is -0.976. Hence, there is a close negative correlation between pH and concentration of iron (Fe) in the well water. The lower (the more acid) the pH, the higher the concentration of iron (Fe).
The general conclusion of this research is: Air pollution which come from rainwater affected to the quality of well water. For the next step, it is suggested to conduct a further research to determine the distribution percentage of the source of pollutant materials (industry/agriculture), population density, type/condition of soil and aquifer that influence to the quality of well water. This is important to be done to find out the most influencing factor to the quality of well water, and to determine the priority in reference ling the well water pollution. To increase the pH value for the wells that have high degree of acidity (low pH value), it could be added with CaO (quick lime). It has been examined previously, where 0,0204 gram of CaO was needed to increase the pH of one liter of well water from 5.732 to 7.00 (neutral pH)."
2002
T3039
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>