Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116756 dokumen yang sesuai dengan query
cover
cover
Endry Yuliana
Depok: Universitas Indonesia, 1999
S32037
UI - Skripsi Membership  Universitas Indonesia Library
cover
Delrahmawati Yusman
Depok: Universitas Indonesia, 2000
S32199
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Shaira Dewi
"Defisiensi riboflavin (vitamin B2) banyak terjadi pada negara berkembang, seperti Indonesia. Sebagai penghasil kelapa no.2 di dunia, peningkatan riboflavin dapat dilakukan pada produk dari kelapa, yaitu nata de coco. Pada starter nata de coco dilakukan variasi rasio penambahan minyak kelapa sawit, optical density (OD), dan pelarut inokulum yang digunakan. Pengukuran dilakukan dengan metode optical density menggunakan spektrofotometer pada panjang gelombang 444 nm.
Hasil penelitian ini menunjukkan bahwa penambahan minyak kelapa sawit dapat meningkatkan produksi riboflavin bakteri Acetobacter xylinum pada starter nata de coco. Konsentrasi riboflavin tertinggi sebesar 5,77 mg/L diperoleh pada starter dengan penambahan 90 g/L minyak kelapa sawit dengan OD dua dan air kelapa sebagai pelarut inokulum.

Deficiency of riboflavin (vitamin B2) occurs in many developing countries, like Indonesia. As the world's No.2 coconut producer, increased riboflavin can be performed on the product of the coconut, such as nata de coco. On the nata de coco starter, the ratio of the addition of palm oil, optical density (OD), and the inoculum solvents are vary. Measurements were taken with an optical density method using a spectrophotometer at 444 nm.
The results of this study show that adding palm oil can increase the riboflavin production of Acetobacter xylinum in nata de coco starter. The highest riboflavin concentration of 5.77 mg/L was obtained at the starter with the addition of 90 g/L palm oil with OD two and coconut water as an inoculum solvent.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1154
UI - Skripsi Open  Universitas Indonesia Library
cover
Edita Martini
"Krisis minyak bumi yang melanda dunia sejak beberapa dekade silam menyebabkan para peneliti mulai mencari sumber-sumber energi alternatif. Salah satu yang cukup potensial adalah biomassa yang dapat dikonversi menjadi bioetanol ataupun biodiesel. Sumber-sumber biomassa ini dapat berupa limbah industri yang belum dimanfaatkan kembali dengan optimal seperti serbuk gergaji bekas media tanam jamur dari limbah industri jamur yang dapat dimakan (edible mushroom). Serbuk gergaji yang merupakan material berbasis lignoselulosa ini biasanya akan dibuang begitu saja atau dijadikan kompos setelah digunakan sebagai media tanam jamur padahal limbah ini sangat berpotensi untuk dijadikan sebagai bahan baku bioetanol karena masih mengandung selulosa. Terlebih lagi, kandungan lignin pada limbah ini telah diuraikan oleh jamur kayu jenis pelapuk putih seperti jamur Tiram (Pleurotus sp.) dan Kuping (Auricularia sp.) sehingga proses pembuatan bioetanol selanjutnya akan lebih mudah. Pada penelitian ini diketahui selektifitas jamur kuping (Auricularia sp.) terhadap lignin lebih besar daripada terhadap holoselulosa karena dari analisa yang dilakukan ternyata jamur kuping (Auricular! sp.) dapat mengurangi kadar lignin sebesar 6,97% dan holoselulosa 4%. Selain itu ada dua macam hidrolisis yang digunakan, yaitu secara kimiawi dan enzimatis. Fermentasi dilakukan selama 72 jam menggunakan Saccharomyces cerevisae yang dikultur pada media cair ekstrak yeast (YMEB). Hidrolisis asam pada penelitian ini menggunakan asam klorida dengan konsentrasi 0,1; 0,2 dan 0,3 M serta variasi ratio massa dengan pelarut 1:6,7; 1:10 dan 1:17,5 (gr/ml). Pada tiap ratio, konversi tertinggi didapatkan pada konsentrasi HC1 0,3 M. Untuk ratio massa 1:6,7 didapatkan konversi tertinggi sebesar 0,3256%, kemudian untuk ratio massa 1:10 konversinya sebesar 0,5029% sedangkan untuk ratio massa 1:17,5 konversinya 0,3565%. Hidrolisis enzim selulase yang dilakukan pada kondisi optimum hidrolisis asam mampu meningkatkan konversi etanol sebesar 46,55 kali dibandingkan dengan hidrolisis asam klorida pada konsentrasi 0,3 M dan ratio 1:10 yaitu dari 0,503% menjadi 23,41%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49538
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Muryanto
"Proses sakarifikasi dan fermentasi serentak/SSF memberikan keunggulan dalam pembuatan bioetanol. Namun proses SSF masih menemui kendala berupa perbedaan suhu optimum proses sakarifikasi dan fermentasi. Pada penelitian ini dilakukan enkapsulasi Rhizopus oryzae dengan memberikan perlindungan menggunakan polimer kalsium-alginat sehingga sel dapat lebih tahan terhadap lingkungan dan suhu, kemudian digunakan pada proses SSF tandan kosong kelapa sawit. Enkapsulasi sel R. oryzae berhasil meningkatkan produksi bioetanol sampai 17% dibandingkan dengan penggunaan sel bebas R. oryzae pada proses SSF tandan kosong kelapa sawit yang telah dilakukan perlakuan awal (pret-TKKS) dengan variasi pH. Produksi etanol yang dihasilkan pada pH 4,5; 5,0; dan 5,5 berturut-turut adalah 33,99 g/l, 38,92 g/l, dan 37,66 g/l. Enkapsulasi sel R. oryzae dapat meningkatkan ketahanan terhadap suhu proses dengan perbedaan produksi etanol yang dihasilkan antara enkapsulasi dengan sel bebas sebesar 31.95 % pada suhu 40°C, dan sebesar 89,16 % pada suhu 45°C, dibandingkan dengan sel bebas R. oryzae. Yield etanol tertinggi yang dihasilkan adalah 0,43 g/g selulosa, dengan konversi sebesar 75,89 % dibandingkan konsentrasi etanol secara teoritis.

Simultaneous saccharification and fermentation process (SSF) was the promising technique for converting cellulose to bioethanol. However, the main problems in SSF process are difference the optimum temperature in saccharification and fermentation. The aim of this research is to encapsulation cell in natural polymer in order to increasing the cell tolerant from environment and high temperature. This research was conduct to encapsulation of Rhizopus oryzae with calcium alginate polymer then used for SSF process from pretreated oil palm empty fruit bunch (EFB). The adaptation ability of these capsules on high temperature and different pH of medium in SSF process oil palm EFB was examined. Encapsulated R. oryzae was increasing the bioethanol production from pretreated EFB in SSF process up to 17 % compared the use of free cell of R. oryzae. The bioethanol production by encapsulated R. oryzae on pH 4.5, 5.0 and 5.5 were 33,99 g/l, 38,92 g/l, and 37,66 g/l. Encapsulated R. oryzae was more resistant from increasing temperature with disparities ethanol production between encapsulated and free cell R.oryzae up to 31.95 % at a temperature of 40°C and up to 89.16% at 45°C.The highest ethanol yield was 0.43 g/g cellulose with maximal theoritical ethanol yield was 75.89 % from pretreated EFB."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30615
UI - Tesis Open  Universitas Indonesia Library
cover
Rizky Adnan
"Penggunaan mesin diesel telah berkembang dengan pesat sehingga dari total konsumsi bahan bakar minyak, minyak diesel (solar) digunakan sekitar 40 %. Peningkatan jumlah kendaraan bermesin diesel dengan konsumsi solar sebesar 20 juta kiloliter pada tahun 2002 menjadi salah satu penyebab polusi udara. Polusi udara yang merupakan masalah lingkungan terutama disebabkan tercemarinya udara ambien oleh gas buang dari kendaraan bermotor terutama mesin diesel seperti NOX, SO*, dan Partikulat yang berukuran < 10 μm (PM-10). Untuk mengurangi laju polusi udara maka perlu dilakukan perbaikan kualitas bahan bakar solar dengan peningkatan Cetane Number (CN). Semakin tinggi CN berarti waktu tunda penyalaan (ignition delay) lebih singkat dan jumlah minyak solar yang dibutuhkan untuk pembakaran menjadi lebih sedikit. CN yang tinggi juga menyebabkan rendahnya laju kenaikan tekanan dan meningkatkan kontrol pembakaran yang berarti meningkatkan eflsiensi mesin, mengurangi getaran, mengurangi jumlah kalor yang hilang serta mengurangi emisi NO* dan partikulat.
Untuk mendapatkan solar dengan CN yang lebih tinggi dapat dilakukan dengan mencampur minyak solar dengan metii ester dari minyak sawit yang mempunyai CN antara 50-60. Cara lainnya ialah dengan penambahan aditif. Aditif yang telah komersial merupakan senyawa organik nitrat, salah satu contohnya yaitu 2 Ethyl Hexyl Nitrate (2-EHN). Penambahan 2-EHN pada solar dengan dosis 0.05 % -0.4 % akan memberikan kenaikan CN sekitar 4-7 angka. Penelitian sebelumnya melaporkan pembuatan aditif berupa senyawa nitrat berbahab baku ester dari minyak sawit dengan proses nitrasi. Aditif tersebut meningkatkan CN 3 -4 angka dengan penambahan 0.5-1.5 % volume pada solar. Mengingat reaksi pra-nitrasi dapat dilakukan dengan berbagai metode, maka perlu diteliti efektifitas dari salah sat metode yaitu dengan menggunakan reagensia Grignard.
Pada penelitian ini dilakukan pembuatan aditif dengan metode analisis menggunakan Infrared untuk melihat daerah serapan atau gugus senyawa yang terbentuk, Atomic Absorption Spectrometry (AAS) untuk menghitung yield logam Magnesium yang bereaksi dan Gas Cromatography-Mass Spectrometry (GC-MS). untuk menganalisa struktur metil ester serta berat molekulnya. Adapun tahapan reaksi yang dilakukan adalah sebagai berikut: reaksi transesterifikasi untuk menghasilkan metil ester, hasilnya struktur palmitat dari minyak kelapa sawit dominan pada metil ester ini. Langkah selanjutnya dengan melakukan sintesis senyawa Grignard, yield dari reaksi ini adalah 66.67 %. Grignard hasil sintesis direaksikan dengan metil ester untuk menghasilkan senyawa antara yaitu alkohol tersier, yield reaksinya adalah 26.41 %. Lalu dilakukan reaksi nitrasi pada campuran alkohol tersier yang terbentuk dan metil ester sisa, sehingga dihasilkan aditif yang merupakan campuran senyawa Ester Nitrat dan senyawa Ester Nitrit. Penggunaan dosis 0,25-1.5 % meningkatkan CN minyak solar 0-8-4 angka. Penambahan 1 % sudah cukup meningkatkan CN minyak solar indonesia dari 45 menjadi 48 untuk memenuhi standar intemasional kategori I. Penambahan 2 % senyawa ini meningkatkan CN menjadi 11-15 angka dan minyak solar bersifat lebih eksplosif."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T345
UI - Tesis Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 2007
S31420
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anondho Wijanarko
"Konversi minyak kelapa sawit menjadi fraksi bensin merupakan salah satu upaya pencarian energi alternatif sebagai pengganti suplai energi berbasis minyak bumi. Hasil penelitian terdahulu menunjukkan minyak kelapa sawit dapat direngkah menjadi hidrokarbon melalui reaksi perengkahan katalik dengan katalis asam, salah satunya adalah katalis γ-alumina. Dalam penelitian ini dilakukan reaksi minyak sawit dengan katalis γ-alumina di dalam reaktor tumpak berpengaduk yang dilakukan dengan variasi perbandingan berat minyak/katalis 100:1, 75:1 dan 50:1 pada variasi suhu reaksi antara 260 - 340 °C dalam variasi waktu reaksi 1-2 jam. Pasca reaksi perengkahan, produk bensin alternatif ini (biogasoline) diperoleh setelah perlakuan distilasi tumpak 2 tahap. Uji densitas dan viskositas produk ini menunjukkan hasil yang mendekati sifat fisika bensin komersial. Dari hasil uji densitas, viskositas, dan Fourier Transform Infra Red Spektrofotometer (FTIR) produk reaksi perengkahan dapat disimpulkan bahwa produk optimum reaksi terjadi pada perbandingan berat minyak/katalis 100:1 dalam waktu 1.5 jam dan suhu 340 °C, dan hasil uji kandungan produk dengan FTIR, Gas Chromatography (GC), dan Gas Chromatografi-Mass Spectrofotometer (GC-MS) menunjukkan adanya kemiripan dengan kandungan bensin komersial. Berdasarkan hasil uji tersebut, produksi biogasoline pada penelitian ini memiliki yield 11.8% (v/v) dan konversi 28.0% (v/v ) terhadap umpan minyak sawit dengan bilangan oktana produknya sebesar 61.0.

Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst. Bio gasoline conversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energy utilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reaction with γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in a stirrer batch reactor with the oil/catalyst weight ratio variation of 100:1, 75:1, and 50:1; at suhue variation of 260 to 340°C and reaction time variation of 1 to 2 hour. Post cracking reaction, bio gasoline yield could be obtained after 2 steps batch distillation. Physical property test result such as density and viscosity of this cracking reaction product and commercial gasoline tended a closed similarity. According to result of the cracking product?s density, viscosity and FTIR, it can conclude that optimum yield of the palm oil catalytic cracking reaction could be occurred when oil/catalyst weight ratio 100:1 at 340°C in 1.5 hour and base on this bio gasoline?s FTIR, GC and GC-MS identification results, its hydrocarbons content was resembled to the commercial gasoline. This palm oil catalytic cracking reaction shown 11.8% (v/v) in yield and 28.0% (v/v) in conversion concern to feed palm oil base and produced a 61.0 octane number?s bio gasoline."
Depok: Lembaga Penelitian Universitas Indonesia, 2006
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>