Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 80409 dokumen yang sesuai dengan query
cover
"Telah dibuat sistem pendataan pengunjung perpustakaan dengan cara membaca Nomor Pokok Mahasiswa (NPM) yang tertera pada image kartu mahasiswa (KTM). Penangkapan image KTM dilakukan dengan menggunakan webcam Prolink PCC 900. Sistem ini meliputi modul image processing untuk mengekstraksi NPM dari image KTM dan mengsegmentasi untuk setiap karakternya; dan modul artificial neural network untuk pengenalan karakter. Modul image processing melibatkan profil proyeksi, operator dilatasi, graying, adaptive thresholding, dan filter median. Neural network feed-forward dua layer digunakan untuk mengenali pola piksel satu dan nol pada image karakter yang telah disegmentasi dari image NPM. Network ini dilatih dengan menggunakan metode dasar back-propagation. Beberapa ukuran network diuji dan kemudian dipilih salah satu yang memberikan nilai error terkecil pada sampel pengujian."
Universitas Indonesia, 2006
S28855
UI - Skripsi Membership  Universitas Indonesia Library
cover
Searfoss, Glenn
New York: Van Nosttrand Reinhold , 1994
495.6 SEA j
Buku Teks  Universitas Indonesia Library
cover
Parluhutan, Matthew Tumbur
"Pandemi COVID-19 mengubah pola kehidupan manusia, termasuk sistem perkuliahan yang berubah ke metode daring. Video perkuliahan dengan salindia menjadi salah satu pilihan sarana penyampaian materi kuliah secara daring. Penelitian ini bermaksud menguji keabsahan rancangan sistem yang mampu melakukan segmentasi temporal sesuai topik secara otomatis pada video perkuliahan. Sistem yang diajukan dibagi menjadi tiga sub-sistem yang memanfaatkan teknologi keyframe extraction, optical character recognition (OCR), dan topic modelling. Pertama, video perkuliahan akan diubah menjadi kumpulan keyframe dengan memanfaatkan metode Slide Detector yang dimodifikasi. Selanjutnya, akan dilakukan ekstraksi teks dari frame-frame tersebut menggunakan Tesseract OCR dengan preprocessing tambahan. Akhirnya, BERTopic dengan beragam algoritma clustering dan LDA diuji kemampuannya dalam topic modelling yang berguna untuk mengambil topik yang koheren dari teks tersebut. Penelitian pada tahap keyframe extraction menunjukkan bahwa terdapat peningkatan recall sebesar 0,235-025 dari 0 dan precision sebesar 0,619-0,75 dari 0 pada beberapa video pada Slide Detector termodifikasi. Sebaliknya, penelitian pada tahap OCR menunjukkan bahwa tambahan preprocessing belum bisa membantu meningkatkan performa Tesseract OCR. Pada tahap terakhir, ditemukan bahwa BERTopic lebih unggul daripada LDA dalam menarik topik yang koheren untuk use case penelitian ini. Agglomerative dan KMeans clustering ditemukan lebih optimal untuk kasus video perkuliahan jika dibandingkan dengan metode density-based. Augmentasi data dengan takaran yang sesuai diperlukan untuk mendapatkan hasil sedemikian rupa pada tahap ini. Secara umum, sistem dengan tiga bagian yang diusulkan pada penelitian ini sudah mampu melakukan segmentasi video perkuliahan sesuai tujuan, namun, video perkuliahan bersalindia merupakan dataset yang sangat heterogen dan merancang sebuah sistem yang mampu memanfaatkan dataset tersebut adalah tantangan tersendiri.

The COVID-19 pandemic changed the lifestyle of many people, including university lectures that moved to online delivery. Lecture videos with slides became an option to deliver lecture materials online. This work attempts to show a proof of concept for a system design that is able to automatically segment a lecture video temporally based on the topic. The proposed system is divided into three subsystems that make use of keyframe extraction, optical character recognition (OCR), and topic modelling techniques. First, a lecture video will be converted to a collection of keyframes using a modified Slide Detector technique. Next, those frames will be processed using Tesseract OCR with some additional preprocessing steps to extract text. Lastly, BERTopic with various clustering techniques and LDA will be used for topic modelling to obtain a coherent topic from the text extracted earlier. The research in the keyframe extraction step shows that there is an increase of 0.235-0,5 points from 0 for recall and 0,619-0,75 points from 0 for precision for certain videos using the modified Slide Detector. On the other hand, the research in the OCR step shows that the additional preprocessing is not yet able to help increase the performance of Tesseract OCR. At the last step, BERTopic proves to be better than LDA to obtain the coherent topic for this system's use case. Agglomerative and KMeans clustering is better for lecture videos compared to density-based methods. Appropriate amounts of data augmentation is needed to obtain the best results at this step. Overall, the three-part system in this research is able to segment lecture videos as intended, however, lecture videos with slides is a dataset that is very heterogeneous and designing a system to handle all types of videos is a large challenge."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Puja Romulus
"ABSTRAK
Skripsi ini bertujuan untuk mendukung pemeliharaan aset budaya bangsa, terkhusus dalam hal sistem penulisan atau aksara kuno. Implementasinya akan membahas aspek teknologi yaitu pengolahan citra. Pada penelitian kali ini objek yang dikhususkan adalah aksara kuno dari suku Batak. Implementasi dari ide ini akan berbentuk program yang dapat mendeteksi karakter-karakter pada citra dari sebuah dokumen aksara Batak yang bebas dari noise. Program akan memproses citra dari tahapan segmentasi, preprocessing, ekstraksi fitur hingga tahapan klasifikasi. Secara khusus pada ekstraksi fitur dan juga klasifikasi akan ada dua metode yang digunakan yaitu Geometric Moment Invariant dan juga K-Nearest Neighbor. Hasil dari uji coba terdiri dari dua yaitu akurasi atau ketepatan pembacaan, dan juga waktu pemrosesan. Jangkauan hasil pada akurasi berada pada 42% - 96% sementara waktu pemrosesan berada pada 1.9 – 34 detik.

ABSTRACT
This undergraduate thesis is intended to support the preservation of national cultural asset, especially for the ancient characters. The implentation uses technological approach in image processing field. The researched object for this thesis is Batak ancient character. The implementation of the idea will result an application program that will detect the characters in a sample image of a Batak’s document which is still free from any noise. The application program will process the image through several phases. The phases are segmentation, preprocessing, feature extraction, and classification. There is a special method used in each feature extraction and classification. Feature extraction uses Geometric Moment Invariant whereas classification phases uses K-Nearest Neighbour. There will be two results for this test, the first is accuration of the detection and second is the procesing time. The range for the accuration is 42% - 96% and the processing time ranged from 1.9 – 34 seconds."
Fakultas Teknik Universitas Indonesia, 2014
S56323
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Irfan Junaidi
"Pandemi COVID-19 mengubah pola kehidupan manusia, termasuk sistem perkuliahan yang berubah ke metode daring. Video perkuliahan dengan salindia menjadi salah satu pilihan sarana penyampaian materi kuliah secara daring. Penelitian ini bermaksud menguji keabsahan rancangan sistem yang mampu melakukan segmentasi temporal sesuai topik secara otomatis pada video perkuliahan. Sistem yang diajukan dibagi menjadi tiga sub-sistem yang memanfaatkan teknologi keyframe extraction, optical character recognition (OCR), dan topic modelling. Pertama, video perkuliahan akan diubah menjadi kumpulan keyframe dengan memanfaatkan metode Slide Detector yang dimodifikasi. Selanjutnya, akan dilakukan ekstraksi teks dari frame-frame tersebut menggunakan Tesseract OCR dengan preprocessing tambahan. Akhirnya, BERTopic dengan beragam algoritma clustering dan LDA diuji kemampuannya dalam topic modelling yang berguna untuk mengambil topik yang koheren dari teks tersebut. Penelitian pada tahap keyframe extraction menunjukkan bahwa terdapat peningkatan recall sebesar 0,235-025 dari 0 dan precision sebesar 0,619-0,75 dari 0 pada beberapa video pada Slide Detector termodifikasi. Sebaliknya, penelitian pada tahap OCR menunjukkan bahwa tambahan preprocessing belum bisa membantu meningkatkan performa Tesseract OCR. Pada tahap terakhir, ditemukan bahwa BERTopic lebih unggul daripada LDA dalam menarik topik yang koheren untuk use case penelitian ini. Agglomerative dan KMeans clustering ditemukan lebih optimal untuk kasus video perkuliahan jika dibandingkan dengan metode density-based. Augmentasi data dengan takaran yang sesuai diperlukan untuk mendapatkan hasil sedemikian rupa pada tahap ini. Secara umum, sistem dengan tiga bagian yang diusulkan pada penelitian ini sudah mampu melakukan segmentasi video perkuliahan sesuai tujuan, namun, video perkuliahan bersalindia merupakan dataset yang sangat heterogen dan merancang sebuah sistem yang mampu memanfaatkan dataset tersebut adalah tantangan tersendiri.

The COVID-19 pandemic changed the lifestyle of many people, including university lectures that moved to online delivery. Lecture videos with slides became an option to deliver lecture materials online. This work attempts to show a proof of concept for a system design that is able to automatically segment a lecture video temporally based on the topic. The proposed system is divided into three subsystems that make use of keyframe extraction, optical character recognition (OCR), and topic modelling techniques. First, a lecture video will be converted to a collection of keyframes using a modified Slide Detector technique. Next, those frames will be processed using Tesseract OCR with some additional preprocessing steps to extract text. Lastly, BERTopic with various clustering techniques and LDA will be used for topic modelling to obtain a coherent topic from the text extracted earlier. The research in the keyframe extraction step shows that there is an increase of 0.235-0,5 points from 0 for recall and 0,619-0,75 points from 0 for precision for certain videos using the modified Slide Detector. On the other hand, the research in the OCR step shows that the additional preprocessing is not yet able to help increase the performance of Tesseract OCR. At the last step, BERTopic proves to be better than LDA to obtain the coherent topic for this system's use case. Agglomerative and KMeans clustering is better for lecture videos compared to density-based methods. Appropriate amounts of data augmentation is needed to obtain the best results at this step. Overall, the three-part system in this research is able to segment lecture videos as intended, however, lecture videos with slides is a dataset that is very heterogeneous and designing a system to handle all types of videos is a large challenge."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jidan Dhirayoga Gumbira
"Skripsi ini membahas tentang pengembangan sistem face recognition yang diaplikasikan pada aplikasi ujian berbasis Android yang diberi nama AyoTest menggunakan FaceNet. Tujuan dari dikembangkannya AyoTest sendiri adalah untuk membantu tenaga pengajar dalam meningkatkan efektivitas pengawasan ujian yang dilakukan secara daring. Penelitian ini diharapkan dapat membantu dalam meningkatkan efektivitas pengawasan ujian daring dengan menggunakan face recognition untuk mengotomatisasi sebagian besar dari kegiatan pengawasan yang sebelumnya harus dilakukan secara manual oleh tenaga pengajar. Berdasarkan hasil penelitian, didapatkan bahwa implementasi sistem face recognition dari aplikasi AyoTest dapat digunakan untuk meningkatkan efektivitas pengawasan ujian, di mana pada proses face authentication akurasi yang didapatkan adalah sebesar 100% bahkan ketika peserta ujian hanya memiliki 1 foto pada basis data wajah dan nilai false negative dan false positive pada proses face monitoring yang tercatat hanya sebesar 16,67% dan 22,22% untuk 18 partisipan yang berhasil melaksanakan ujian.

This bachelor thesis discusses the system development of face recognition applied to an Android-based examination application called AyoTest using FaceNet. The purpose of the development of AyoTest itself is to assist teaching staff in increasing the effectiveness of conducting online examinations. This research is hoped to assist in increasing the effectiveness of examination proctoring with face recognition to automate most of the supervisions that previously had to be conducted manually by teaching staff. Based on the results of the research, it was found that the implementation of the face recognition system from the AyoTest application can be used to increase the effectiveness of examination proctoring, where the accuracy score obtained in the face authentication process is 100% even if the examinee only has 1 photo in the face database and the false negative and false positive scores in the face monitoring process were recorded at only 16.67% and 22,22% for 18 participants who successfully carried out the examination."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mitsal Shafiq Sulasno
"Penelitian ini bertujuan untuk merancang dan membuat sistem rotasi Faraday sebagai alat karakterisasi sifat Magneto-Optik minyak nabati. Besaran yang diukur adalah intensitas cahaya, besar medan magnet, dan perubahan sudut bidang getar polarisasi. Pengukuran intensitas cahaya dilakukan menggunakan BH1750, pengukuran medan magnet dilakukan menggunakan Gaussmeter. Perubahan sudut bidang getar polarisasi dilakukan oleh stepper motor yang menggerakkan lensa analisator yang sudah dipasang gear. Sumber cahaya yang digunakan adalah laser RGB dengan daya 300 mW. Pengambilan data dilakukan dengan kondisi awal sudut antara lensa Polarisator dan lensa Analisator sebesar 45º. Konstanta Verdet untuk minyak jagung dengan sumber cahaya merah adalah 0,37 mT/m. Konstanta Verdet untuk minyak jagung dengan sumber cahaya hijau adalah 0,55 mT/m. Untuk sumber cahaya biru, nilai konstanta Verdet yang didapatkan adalah 0,73 mT/m.

This research aims to design and create Faraday’s rotation system as a tool to characterize the Magneto-Optic properties of vegetable oils. The measured magnitude is the intensity of light, the magnitude of the magnetic field, and the change in the rotation angle of polarization. Measurement of light intensity was carried out using BH1750, magnetic field measurement was carried out using Gaussmeter. Changes in the rotation angle of polarization are made by the stepper motor which drives the lens of the analyzer which has been geared. The light source used is an RGB laser with a power of 300 mW. Data is collected by the initial condition of the angle between polarizer lens and analyzer lens at 45º. The Verdet constant for corn oil with a red light source is 0.37 mT/m. The Verdet constant for corn oil with green light source is 0.55 mT/m. For blue light source, the Verdet constant value that obtained is 0.73 mT/m
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeffry Kurniawan Zheta
"Penggunaan pin dan password bahkan token sudah dianggap ketinggalan zaman sehingga negara berkembang banyak mengembangkan metode transaksi berbasis biometrik. Biometrik yang merupakan karakterisitik biologis yang banyak digunakan saat ini adalah mata, wajah, dan sidik jari. Wajah dan sidik jari dalam kondisi tertentu dapat berubah dan tidak dapat dikenali oleh sebab itu mata atau tepatnya iris adalah pilihan yang tepat untuk digunakan untuk metode autentikasi mengingat mata manusia tidak mudah berubah.
Tugas akhir ini berfokus pada pengembangan sistem yang sudah ada sebelumnya mengenai autentikasi menggunakan metode lokalisasi dan normalisasi half-polar pada iris mata. Pengembangan yang dilakukan adalah agar pengenalan dapat lebih akurat dan cepat menggunakan metode segementasi mata dan normalisasi yang berbeda dengan metode half-polar serta membuat pengenalan dapat dilakukan pada mata kiri dan kanan secara bersamaan mengingat Iris pattern pada kedua mata manusia berbeda.
Metode-metode segmentasi iris yang diajukan adalah Zeta-v1, Zeta-v2, Zeta-v3, Zeta-v4, Zeta-v5, Zeta-v6 dan Zeta-v7. Hasil pengujian terbaik dari segi performa waktu ditunjukkan oleh metode Zeta-v7 dengan rata-rata 0.0138427 detik. Hasil Pengujian terbaik dari segi akurasi sistem adalah Zeta-v1, dengan persentase penolakan yang salah bernilai 100 dan persentase penerimaan yang benar bernilai 94,90.

The use of pin and password and even tokens is considered outdated, so many countries develop biometric based transaction methods. Biometrics which are the most widely used biological characteristics are the eye, face, and fingerprint. The faces and fingerprints in certain conditions can change and can not be recognized. The eye or precisely the iris is the right choice to use for authentication methods considering that the human rsquo s eye is not easily changed.
This final assignment focuses on the development of previous systems of authentication using localization methods and half polar Normalization of the iris. Development is performed to make the recognition more accurate dan faster while using different eye segmentation and Normalization methods. The recognition methods can be used for left and right eyes considering both eyes in human have different iris pattern.
The proposed iris segmentation methods are Zeta v1, Zeta v2, Zeta v3, Zeta v4, Zeta v5, Zeta v6 dan Zeta v7. The best test result based on time performance presented by the Zeta v7 segmentation which shows the average time performance 0.0138427 seconds. The best result based on accuracy presented by Zeta v1 which show the percentage of wrong rejection 100 and percentage of right acceptance 94,90.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Fithriaty Puspohadiningrum
"In line with the increasing need for higher performance for optical and photonic telecommunications equipment at the lowest possible cost, the need for supporting equipment is also increasing. One of these components is an optical power splitter. This component is needed in network systems to distribute light to other components, especially multi-channel optical power separators to support larger network systems. One of the materials developed as a photonic device material from group III-nitride is gallium nitride (GaN). Besides having a large direct bandgap (3.4eV), GaN also has good resistance to temperature changes. Thus, GaN-based power splitters are an interesting research topic to obtain more improvements, innovations and inventions for future demands. In this research, an optical power splitter design is proposed based on the 1 × 8 multimode interference (MMI) structure. The design has been carried out theoretically using 3D FD-OptiBPM on GaN material. Structural modeling using 300 nm AlN and 200 nm AlGaN as a buffer layer on a sapphire substrate material. Numerical experiments were carried out at the optical telecommunications wavelength at = 1.55 m with the effective refractive index of the coating used =2.279±0.001 and =2.316±0.001. The results showed that the optimum width and thickness of the rectangular input channel and taper-shaped output channel was 4 m, and only supported single mode propagation. From the experimental simulation results, it is shown that the MMI-based optical power separator with a total length of 2010 m and a width of 85 m is the best result. It is also shown that the output power is split almost uniformly into eight output channels with a relative output power of 0.96 on the output channel, 0.28 dB of excess loss and 0.28 dB of power imbalance. 13 dB. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bukshtab, Michael
"Applied photometry, radiometry, and measurements of optical losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determination of power and energy parameters of radiation and color properties of light.
"
Dordrecht: [Springer, ], 2012
e20425307
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>