Ditemukan 37568 dokumen yang sesuai dengan query
Universitas Indonesia, 1991
S28101
UI - Skripsi Membership Universitas Indonesia Library
"Pengenalan rambu lalu-lintas merupakan salah satu tugas yang harus dilaksanakan oleh sebuah mobil pintar_ Pada kondisi jalan sebenarnya, masalah yang dihadapi akan meliputi bervariasinya kuat cahaya, perubahan skala rambu karena perubahan jarak, dan adanya noise pada rambu. Sebuah sistem pengenalan rambu yang baik akan dipersiapkan untuk mengatasi masalah-masalah tersebut. Pada Skripsi ini, dicoba untuk merancang sebuah sistem pengenalan rambu yang dipersiapkan untuk berhadapan dengan masalah-masalah di atas. Sistem ini masih bersifat off-line. Citra yang dipakai adalah citra basil pemotretan, sedangkan keluaran berupa pengenalan jenis rambu. Rambu yang dikenali dibatasi hanya yang tepinya berwarna merah saja. Untuk mengatasi masalah bervariasinya kuat cahaya, segmentasi rambu dari lingkungan memakai basis sistem wama HSI. Sistem warna ini mendeskripsikan sebuah warm dalam 3 komponen terpisah. Hue dipakai untuk menyatakan wama dominan yang dilihat pengamat, saturasi menyatakan kemurnian relatif dari warna tersebut, atau jumlah warna putih yang tercampur dengan kue tersebut, sedangkan kuat Iemahnya cahaya dinyatakan dalam intensitas. Pengenalan bentuk dan citra rambu yang sudah tersegmentasi dilakukan oleh jaringan saraf tiruan (ANN T Artificial Neural Networks). Jaringan yang dipakai berupa jaringan bertingkat antara Kohonen dan Propagasi Balik (Backpropagation). Modus kerja jaringan Kohonen adalah unsnpervis-ed, sedangkan Propagasi Balik bersifat supervised. Penggabungan keduanya diharapkan memberikan kineda yang lebih balk. Agar fungsi ANN hanya kepada pengenalan bentuk dan bukan warna rambu, maka citra rambu tersegmentasi diubah terlebih dahulu menjadi citra monokrom. Selanjutnya dilakukan proses penghalusan (smoothing) terhadap citra monokrom untuk memperbaiki kualitas citra. Ekstraksi eiri masukan ke ANN dilakukan dengan teknik ekstraksi ciri spektrum daya Fourier."
Fakultas Teknik Universitas Indonesia, 1997
S38867
UI - Skripsi Membership Universitas Indonesia Library
Kustini
"Teori color Vision yang telah ada sebelum munculnya teori retinei, seperti teori tiga pigmen (teori Young-Helmholtz) dan teori warna oponen, temyata kurang dapat menjelaskan fenomena yang ada dalam dunia penglihatan manusia seperti color constancy dan simultaneous contrast. Ternyata kemudian Land memperkenalkan teorinya yang mencoba menggali kemampuan mata manusia dalam menangkap dan memproses gambar objek. Dalam pengolahan citra, retinex ini dapat diartikan sebagai proses yang menghadirkan realisme visual pada citra secara otomatis.
Di antara banyak algoritma retinex yang ada, dalam skripsi ini akan dibahas dua algoritma relinex, yaitu algoritma relines McCann99 dan algoritma retinex Frankle-McCann secara mendalam disertai dengan implementasinya pada Matlab. Dari iimplementasi Matlab yang telah dirancang agar dapat memproses gambar berwarna, akan dilakukan uji coba. Dalam hasil uji coba akan terlihat bagaimana proses kerja dan ;
unjuk kerja retinez terhadap citra input, yang menunjukkan bahwa kedua algoritma refinex tersebut dapat melakukan perbaikan citra dalam masalah color constancy dan juga melakukan estimasi pencahayaan yang sesuai dengan efek simultaneous contrast.
"
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39064
UI - Skripsi Membership Universitas Indonesia Library
Universitas Indonesia, 1995
S28356
UI - Skripsi Membership Universitas Indonesia Library
Martina Rusalina Yosephien
2007
T24935
UI - Tesis Membership Universitas Indonesia Library
Ismi Nadiya
"Suatu runtun waktu yang memiliki variabel respon biner disebut runtun waktu biner. Runtun waktu biner dapat dimodelkan menggunakan model umum Autoregressive dengan pendekatan regresi non-linier. Kedem Fokianos 2000 mengenalkan model runtun waktu biner melalui pendekatan Autoregressive dan regresi logistik. Metode yang digunakan untuk penaksiran parameter yaitu metode Partial Likelihood. Metode Partial Likelihood ini dilakukan dengan menentukan fungsi Partial Likelihood yang dibentuk dari probability density function pdf marginal distribusi Bernoulli. Namun, dalam proses penaksiran parameter menggunakan metode Partial Likelihood ditemukan kesulitan untuk mendapatkan solusi secara langsung dikarenakan persamaan yang tidak linier closed form. Oleh karena itu, untuk mengatasi hal tersebut dilakukan iterasi menggunakan metode Fisher Scoring.
Aplikasi data pada penaksiran parameter untuk model runtun waktu biner dalam tugas akhir ini menggunakan data kompetisi balap perahu antara Universitas Cambridge dan Universitas Oxford yang dicatat pada tahun 1946 sampai 2011 dengan jumlah data berbeda yaitu 22, 44, dan 66 data. Berdasarkan aplikasi data yang dilakukan, diperoleh hasil bahwa penaksiran parameter untuk model runtun waktu biner menggunakan Partial Likelihood dengan jumlah data yang berbeda menghasilkan penaksir parameter yang relatif sama atau tidak memiliki perbedaan yang signifikan.
A time series that has binary respon variable is called a binary time series. Binary time series can be modeled using the Autoregressive general model and nonlinear regression approach. Kedem Fokianos 2000 introduced a binary time series model through the Autoregressive and logistic regression approach. The parameters of binary time series are estimated using the Partial Likelihood method. The Partial Likelihood method is performed by determining the Partial Likelihood function derived from the marginal probability density function pdf of Bernoulli distribution. However, in the process of parameter estimation using this method, the form of final function to obtain parameters is not in the closed form equation. To face this problem, Fisher scoring iterations are perfomed. The application of parameter estimation of the model uses the data about boat racing competition between the University of Cambridge and Oxford University from 1946 to 2011. Based on the data application, parameter estimation of the binary time series model using partial likelihood with different amounts of data resulting in a relatively same or no significant parameter estimator."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Universitas Indonesia, 1996
S28376
UI - Skripsi Membership Universitas Indonesia Library
Mohammad Kenas Ashari
"Penggunaan komponen pasif pada sistem suspensi kendaraan mempunyai beberapa kelemahan, yaitu sistem tidak dapat menyesuaikan dengan kondisi permukaan jalan yang mengurangi kenyamanan serta keamanan dalam berkendara. Untuk mengatasi masalah tersebut dapat dilakukan dengan menambahkan komponen aktif pada sistem suspensi pasif, yang kemudian lebih dikenal dengan sistem suspensi semi-aktif. Sumber tenaga eksternal tidak diperlukan pada suspensi semi-aktif, sehingga hanya perlu mengubah damping koefisien pada damper. Dengan mengendalikan output berupa suspension deflection dari gangguan eksternal berupa kontur jalan pada model kendaraan full car diperlukan pengendali yang prediktif. Salah satu pengendali prediktif yang umum digunakan dan sudah teruji adalah Model Predictive Control (MPC). MPC digunakan untuk mengendalikan sistem suspensi semi-aktif hasil dari identifikasi sistem dengan metode identifikasi least square bertingkat. Pada laporan skripsi ini diajukan metode simulasi untuk hasil kinerja dari sistem yang akan diuji dengan menggunakan perangkat lunak MATLAB. Sedangkan untuk pengambilan data dan melihat hasil kinerja simulasi pada model kendaraan dengan menggunakan simulator Carsim.
The use of passive components in vehicle suspension systems has several disadvantages, one of them is the system cannot adjust to road surface conditions that reduce comfort and safety in driving. To overcome this problem can be done by adding active components to the passive suspension system, which is then better known as a semi-active suspension system. External power sources are not required for semi-active suspensions, so only need to change the damping coefficient on the damper. By controlling the output in the form of suspension deflection from external disturbances in the form of road contours on a full car vehicle model, a predictive controller is needed. One predictive controller that is commonly used and tested is the Model Predictive Control (MPC). MPC is used to control the semi-active suspension system as a result of identifying the system with the multistage least square identification method. In this thesis report, a simulation method is proposed for the performance results of the system to be tested using MATLAB software. Meanwhile, to data collecting and see the performance results on vehicle models using the Carsim simulator."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Sardy S.
Depok: Fakultas Teknik Universitas Indonesia, 1992
LP-Pdf
UI - Laporan Penelitian Universitas Indonesia Library
Aniati Murni Arymurthy
Jakarta : Elex Media Komputindo , 1992
001.64 ANI p
Buku Teks SO Universitas Indonesia Library