Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 105413 dokumen yang sesuai dengan query
cover
Edison Kurniawan
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28563
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Andreas Sudana
"

Pengembangan algoritma untuk kendali quadrotor semakin masif dilakukan oleh peneliti diseluruh dunia. Sama seperti manusia yang melihat dan kemudian dapat mendekati dan menyentuh suatu obyek, penelitian ini juga diarahkan untuk menciptakan prinsip yang sama yang kami sebut sebagai Image Loop Control (ILC). Proses pendeteksian objek memanfaatkan kecerdasan buatan YOLOv8 (AI deep learning) sebagai state-of-the-art pada dunia pendeteksian objek kecil membawa performa pendeteksian objek kecil ke tingkat yang lebih tinggi dengan inovasinya yang revolusioner. Penerapannya di quadrotor diharapkan dapat memungkinkan tingkat otonomi pada otomasi quadrotor melalui image loop control tersebut. Di dalam ILC tetap digunakan kendali Proporsional dan Differensial (PD) untuk mengendalikan gerak pada tiap sumbu gerakan. Skripsi ini melaporkan gerak yaw yang dilakukan oleh quadrotor sebagai respon dari deteksi obyek oleh YOLOv8. Pada proses validasi hasil pelatihan dataset, sebesar 96% gambar pintu tertutup terdeteksi sebagai close, 94% gambar pintu terbuka terdeteksi sebagai open, dan 87% gambar pintu setengah terbuka terdeteksi sebagai semi. Hasil proses image loop control respon kontroler PD di sumbu yaw, memiliki rata-rata time delay sebesar 0,98 detik, rata-rata rise time sebesar 1,26 detik, dan rata-rata settling time sebesar 8,62 detik menggunakan nilai Kp = 1,2 dan Kd = 0,5.


The development of quadrotor control algorithm has been extensively pursued by numerous researchers around the world. Similar to how humans can look, move around, and interact with an object, this research aims to achieve the same through a principle we define as the Image Loop Control (ILC). The process of object detection using the artificial intelligence YOLOv8 (deep learning AI) as the state-of-the-art in the small object detection world has brought the performance of small object detection algorithms to a higher level thanks to its revolutionary innovation. Its implementation in a quadrotor may enhance the degree of autonomy on automated quadrotors by using an image loop control. Within the ILC framework, we use a Proportional and Differential (PD) controller to control quadrotor movements along each axis. This thesis presents the performance of yawing movements executed by the quadrotor in response to object detections identified by the YOLOv8. During the validation process of the trained dataset, the system detected 96% of closed doors accurately, 94% of open doors accurately, and 87% of semi opened doors accurately. The response of the image loop control response using a PD controller on the yaw axis resulted in an average time delay of 0.98 seconds, average rise time of 1.26 seconds, and average settling time of 8.62 seconds with the values Kp = 1.2 and Kd = 0.5."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldy Raja
"Klasifikasi aksi multi-objek berdasarkan video RGB aerial merupakan tantangan kompleks yang dapat berguna untuk pengembangan sistem keamanan. Terdapat dua pendekatan jaringan saraf tiruan yang umum digunakan dalam sistem pengenal berbasis kerangka, Convolutional Neural Network (CNN) dan Graph Convolutional Network (GCN). Pendekatan CNN lebih efektif dalam mempelajari fitur spatio-temporal, lebih kuat terhadap noise dalam estimasi pose, dan dapat menangani skenario multi-objek dengan komputasi yang lebih ringan. Penelitian ini meliputi pengembangan pengenal aksi manusia dengan pendeteksi spatio-temporal berbasis kerangka menggunakan pendekatan 3D Convolutional Neural Network (3D-CNN). Pendeteksi spatio-temporal memungkinkan sistem untuk mengenali tiap-tiap aksi yang simultan dilakukan oleh multi-objek dalam satu rekaman video. Percobaan dilakukan menggunakan sejumlah pre-trained dataset dan menggunakan dataset video RGB aerial primer yang dilatih terhadap model pengenal aksi berbasis video frontal, dengan menerapkan metode transfer learning. Proses tranfer learning dilakukan dengan dataset khusus untuk menghasilkan model pelatihan yang memiliki akurasi tinggi. Pelatihan memberi keluaran berupa model jaringan saraf tiruan dengan nilai akurasinya. Pengujian dilakukan menggunakan data video untuk mengetahui ketepatan model. Dari model yang diperoleh, akan dilakukan analisis terhadap keberhasilan dan keakuratan metode dalam mengenali aksi manusia.

Multi-object action recognition based on aerial RGB video is a complex challenge that can be useful for security system development. There are two commonly used artificial neural network approaches in skeleton-based recognition systems, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN). CNN approach is more effective in learning spatio-temporal features, more robust to noise in pose estimation, and can handle multi-object scenarios with lighter computation. This research involves developing a human action recognition with skeleton-based spatio-temporal detection using a 3D Convolutional Neural Network (3D-CNN) approach. Spatio-temporal detection allows the system to recognize each simultaneous action performed by multiple objects in a single video footage. Experiments were conducted using a number of pre-trained datasets and using a primary aerial RGB video dataset trained on a frontal video-based action recognition model, by applying the transfer learning method. The transfer learning process is performed with a specific dataset to produce a high-accuracy training model. The training outputs an artificial neural network model with its accuracy value. Testing is done using video data to determine the accuracy of the model. From the model obtained, the success and accuracy of the method in recognizing human actions will be analyzed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book constitutes the refereed proceedings of CVM 2012, the First International Conference on Computational Visual Media, held in Beijing, China, in November 2012. The 33 revised full papers were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections on image processing I and II, geometric processing, saliency, recognition, perception and learning, shape analysis, media retrieval, and capture, rendering and visualization."
Berlin: Springer, 2012
e20407176
eBooks  Universitas Indonesia Library
cover
Ferdi Fadillah
"Dalam pengambilan citra, dapat terjadi penurunan kualitas akibat kondisi lingkungan sekitar. Salah satu kondisi penyebab penurunan kualitas tersebut adalah kondisi hujan, yang menyebabkan citra dengan tetesan air hujan. Dewasa ini, pendekatan deep learning dapat menjadi solusi, dengan banyaknya model yang mampu melakukan restorasi citra dengan tetesan air hujan (raindrop removal). Akan tetapi, banyak model yang hanya mampu menyelesaikan kasus spesifik dan tergantung pada data melalui metode supervised. Sebagai alternatif, terdapat model yang berpotensi dalam kasus ini adalah Zero-Shot Denoising Diffusion Null Model. Zero-Shot Denoising Diffusion Null Model adalah model yang bisa menyelesaikan kasus umum dengan tetap berperforma baik dengan pendekatan zero-shot, yaitu tanpa optimisasi dan pelatihan data. Sayangnya, sejauh ini Zero-Shot DDNM masih terbatas pada masalah linier, sementara itu masalah raindrop removal adalah masalah non-linier. Penelitian ini bertujuan untuk mengukur kemampuan metode Zero-Shot Denoising Diffusion Null Model dalam menyelesaikan masalah non-linier seperti raindrop removal. Untuk membantu memodelkan masalah raindrop removal ini pada Zero-Shot Denoising Diffusion Null Model, dibutuhkan input tambahan berupa raindrop mask. Pada penelitian ini, raindrop mask diperoleh menggunakan Attentive Generative Adversarial Network kemudian dilakukan thresholding dengan nilai 0.5 yang digunakan bersama dengan operator degradasi untuk melakukan deblurring with mask untuk mencari hasil restorasi terbaik. Data citra yang digunakan dalam penelitian ini adalah dataset citra dengan tetesan air hujan di luar ruang. Selain itu diterapkan juga beberapa strategi tambahan yaitu time-travel trick. Hasil restorasi citra dengan tetesan air hujan menunjukkan hasil paling baik dalam metrik Structural Similarity Index Measure yaitu simplified denoising with mask dengan time-travel trick, sedangkan hasil paling baik dalam metrik Peak Signal-to-Noise Ratio yaitu menggunakan simplified denoising with mask.

When taking an image, there can be a decrease in quality due to the surrounding conditions. One of the causes of this decrease in quality is rain, resulting in raindrops in the image. These days, there are many deep learning approached to solve raindrop removal. However, many of the models that perform well for raindrop removal are only able to solve specific cases based on the available data through supervised methods. A potential model capable of more general cases is the Zero-Shot Denoising Diffusion Null Model. Zero-Shot Denoising Diffusion Null Model has the capacity to solve common cases while still performing well in a zero-shot manner, that is, without data optimization and training. However, the model is limited to linear problems, while raindrop removal is a non-linear problem. This study aims to measure the ability of the zero-shot method in solving the non-linear problems of raindrop removal. To help model the raindrop removal task, it is necessary to generate raindrop masks that indicate the location of raindrops in the image. In this research, the raindrop masks are generated using Attentive Generative Adversarial Network then are thresholded with 0.5 value that are used with an adjusted degradation operator for deblurring with masks to find the best restoration results. Additionally, some strategies are implemented such as time-travel trick. The image data used in this study was an image dataset with raindrops outside the room. The result of raindrop removal shows the best results in the Structural Similarity Index Measure metric is simplified denoising with mask and time-travel trick, while the best result in the Peak Signal-to-Noise Ratio metric is using simplified denoising with mask."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rido Dwi Oktanto
"Pada era digital ini, teknologi informasi dan komunikasi berkembang pesat dan berpengaruh signifikan dalam berbagai aspek kehidupan, termasuk keamanan dan pengenalan identitas. Salah satu penerapan teknologi yang menonjol adalah sistem deteksi dan pengenalan wajah yang digunakan di berbagai tempat yang memerlukan keamanan ekstra. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dan pengenalan wajah menggunakan arsitektur ResNet dan perangkat ESP-32, dengan fokus pada implementasi dan evaluasi efektivitas sistem tersebut dalam meningkatkan keamanan.
Metode yang digunakan dalam penelitian ini meliputi penggunaan ResNet-50 untuk pengenalan wajah dan Cascade Classifier untuk deteksi wajah. Data yang digunakan untuk pelatihan model diperoleh melalui proses augmentasi data untuk meningkatkan variasi dan jumlah sampel. Sistem ini diimplementasikan menggunakan perangkat keras ESP-32 dan perangkat lunak MATLAB, serta diuji pada lingkungan nyata untuk mengevaluasi kinerjanya.
Hasil penelitian menunjukkan bahwa sistem yang dikembangkan mampu mendeteksi dan mengenali wajah dengan akurasi tinggi. Integrasi sistem dengan infrastruktur keamanan yang ada juga memungkinkan peningkatan perlindungan terhadap data dan perangkat keras. Dengan demikian, penelitian ini berhasil menunjukkan bahwa teknologi deteksi dan pengenalan wajah dapat memberikan solusi efektif untuk meningkatkan keamanan di berbagai tempat.

In this digital era, information and communication technology has developed rapidly, significantly impacting various aspects of life, including security and identity recognition. One notable application of this technology is the facial detection and recognition system used in various high-security areas. This research aims to develop a facial detection and recognition system using ResNet architecture and ESP-32, focusing on the implementation and evaluation of the system's effectiveness in enhancing security.
The methods used in this study include employing ResNet-50 for facial recognition and Cascade Classifier for facial detection. The data used for model training were obtained through data augmentation processes to increase the variation and number of samples. The system was implemented using ESP-32 hardware and MATLAB software, and tested in real-world environments to evaluate its performance.
The results of the study indicate that the developed system can detect and recognize faces with high accuracy. The system's integration with existing security infrastructure also allows for enhanced protection of data and hardware. Thus, this research successfully demonstrates that facial detection and recognition technology can provide effective solutions for improving security in various locations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
""This book brings together various research methodologies and trends in emerging areas of application of computer vision and image processing for those interested in the research developments of this rapidly growing field"--"
Hershey, PA: Information Science Reference, 2014
006.6 SRI r (1)
Buku Teks  Universitas Indonesia Library
cover
"The two volume set LNCS 7431 and 7432 constitutes the refereed proceedings of the 8th International Symposium on Visual Computing, ISVC 2012, held in Rethymnon, Crete, Greece, in July 2012. The 68 revised full papers and 35 poster papers presented together with 45 special track papers were carefully reviewed and selected from more than 200 submissions. The papers are organized in topical sections, Part I (LNCS 7431) comprises computational bioimaging, computer graphics, calibration and 3D vision, object recognition, illumination, modeling, and segmentation, visualization, 3D mapping, modeling and surface reconstruction, motion and tracking, optimization for vision, graphics, and medical imaging, HCI and recognition. Part II (LNCS 7432) comprises topics such as unconstrained biometrics, advances and trends, intelligent environments, algorithms and applications; applications, virtual reality, face processing and recognition."
Berlin: Springer-Verlag, 2012
e20410548
eBooks  Universitas Indonesia Library
cover
Syahrizal
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38388
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moses Jefferson Irawan
"Skripsi ini membahas analisis perbandingan dua sistem pengenalan rambu lalu lintas yaitu menggunakan metode Generative Learning (GL) dan Support Vector Machine (SVM). GL merupakan metode pengenalan yang baru dikembangkan di mana sampel training dihasilkan dengan memvariasikan sampel yang ada berdasarkan parameter tertentu sehingga dapat mempermudah pembuatan citra untuk training serta dapat memberikan hasil pengenalan yang lebih baik. SVM merupakan metode pengenalan yang telah banyak digunakan dan menggunakan karakteristik vektor untuk memisahkan objek dari latar belakangnya. Sambil berjalan, rambu-rambu lalu lintas direkam oleh kamera video di atas kendaraan bermotor yang hasil rekamannya dianalisis menggunakan kedua metode tersebut. Hasil pengenalan rambu lalu lintas yang dianalisis dalam beberapa kondisi seperti jumlah sampel training, resolusi video, tingkat kecerahan sekitar, dan kecepatan kendaraan kemudian dibandingkan dan dianalisis tingkat akurasinya. Dari hasil percobaan didapat bahwa akurasi pengenalan metode GL lebih baik dibandingkan SVM yaitu dengan persentase masing-masing 95,56% dan 94,67%.

This thesis discusses the comparative analysis of two traffic signs recognition system using Generative Learning (GL) and Support Vector Machine (SVM) methods, respectively. GL is a newly developed method in which the training samples are generated by varying samples based on certain parameters which makes it easier to the training images and produce better recognition result. SVM is a method that has been widely used which uses vector characteristics to separate objects from its background. Traffic signs are recorded using a video camera in a moving motorcycle and videos of them are analyzed using both methods. The accuracy of recognition results will be compared under some conditions, such as the number of training imageries, video resolutions, and lighting conditions, and vehicle’s speed. Recognition results showed that GL has better accuracy than SVM, with percentage of 95.56% and 94.67%, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46771
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>