Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3024 dokumen yang sesuai dengan query
cover
Deni Syafril
"Sensor RH perlu dikalibrasi terlebih dahulu untuk memperoleh tingkat akurasi yang bagus. Mengkalibrasi instrumen kelembaban relatif secara akurat dan efisien tidak mudah, untuk itu dibuatlah sebuah instrumen berbasis PC yang diharapkan bisa melakukan pengukuran impedansi atau kalibrasi dengan lebih efektif. Instrumen ini dibangun dengan sebuah DAQ eksternal, sensor RH SHT11, heater, signal generator, dan signal conditioning. Proses kalibrasi dilakukan di dalam sebuah chamber yang tertutup rapat. Modul sensor RH yang akan dikalibrasi dan sensor RH SHT11 diletakkan di dalam chamber, di dalamnya dimasukkan larutan garam jenuh NaCl sebagai RH referensi. Chamber kemudian di masukkan ke dalam sebuah wadah tanpa tutup yang berisi air. Air berfungsi sebagai media untuk menaikkan temperatur di dalam chamber pada nilai tertentu dengan cara menghidupkan atau mematikan heater secara otomatis melalui relay yang dikontrol dengan program visual basic pada PC. Signal generator dikontrol melalui program pada PC untuk memberikan nilai tegangan dan frekuensi tertentu sebagi input bagi modul sensor RH. Data-data hasil pengukuran yang berupa nilai temperatur, %RH, dan nilai impedansi ditampilkan pada monitor PC dan langsung tersimpan ke dalam database. Setelah dilakukan pengujian pada instrumen ini, akhirnya berhasil didapatkan data hasil pengukuran berupa nilai temperatur, RH, impedansi (Z), dan tegangan. Data-data yang diperoleh tersebut menunjukkan pengaruh perubahan RH terhadap impedansi, yaitu berbanding terbalik. Ketika RH turun, nilai impedansi dari modul sensor RH ini naik. Pada frekuensi triger 1 KHz, kenaikan impedansi lebih terlihat dibandingkan dengan frekuensi yang lebih tinggi, yaitu 10 KHz. Instrumen ini diharapkan dapat digunakan untuk melakukan pengkalibrasian dan pengukuran impedansi modul sensor RH dengan lebih mudah dan efektif."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S29125
UI - Skripsi Membership  Universitas Indonesia Library
cover
Windy Resmana
"Sebuah instrumen untuk memfasilitasi pengukuran waktu respon modul sensor RH berbasis PC telah berhasil dibangun. Instrumen ini dibangun dengan komponenkomponen yang saling terhubung, yaitu DAQ eksternal, signal generator, dan rectifier. Komponen-komponen tersebut terhubung ke sistem sensor yang di dalamnya terdapat sensor RH SHT11 dan sebuah modul sensor RH dengan meletakkan sebuah larutan garam jenuh sebagai RH referensi di dalam sebuah chamber tertutup. Untuk mempermudah pengendalian dan monitoring maka digunakan PC sebagai antarmuka bagi user. Pada PC digunakan software Visual Basic untuk mengontrol dan memonitor sistem. Selain itu penggunaan PC dapat mempermudah dalam menampilkan hasil pengukuran nilai impedansi (Z) dan RH dari sensor yang digunakan, kemudian langsung tersimpan dalam database. Melalui PC, konfigurasi sistem atau parameter setting dapat dipilih berupa nilai tegangan (V) dan frekuensi (f) tertentu sebagai output dari signal generator yang dijadikan input bagi modul sensor RH. Sebagai sistem akuisisi data digunakan sebuah DAQ eksternal, yaitu LabJackU12. Proses kalibrasi dilakukan di dalam sebuah chamber yang telah diisi larutan garam jenuh. Pengukuran yang dilakukan terhadap sensor adalah pengukuran nilai impedansinya. Dari hasil pengukuran, dilihat perubahan nilai impedansi tersebut terhadap perubahan nilai RH dalam fungsi waktu, kemudian diukur waktu responnya. Hasil pengujian menunjukkan instrumen ini berhasil melakukan pengukuran nilai impedansi sensor dan menampilkan hasil pengukuran tersebut secara real time pada monitor PC. Waktu respon dari modul sensor RH yang digunakan, dari penelitian diperoleh 129s. Waktu ini sudah cukup baik untuk tipe modul sensor ini. Penggunaan PC diharapkan dapat menjadikan proses pengukuran akan menjadi lebih efektif dan mudah seperti yang diharapkan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S29121
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianipar, Bill Clinton
"[ABSTRAK
Sensor cahaya merupakan perangkat yang mengubah besaran analog (besaran cahaya) menjadi sinyal listrik. Ada bermacam sensor cahaya yang sering digunakan, beberapa di antaranya ialah sensor cahaya LDR, fotodioda, dan OPT101. Masing-masing sensor memiliki karateristik yang berbeda. Perbedaan yang mencolok adalah jenis sinyal listrik yang dihasilkan oleh masing-masing sensor sebagai dampak dari terangsangnya material di dalam sensor terhadap perubahan besar penerangan. Sensor cahaya LDR memiliki resistansi yang semakin kecil nilainya dengan bertambah besarnya penerangan, sedangkan arus listrik dari fotodioda semakin besar nilainya dengan penerangan yang semakin besar pula nilainya. Modul praktikum sensor cahaya mampu untuk memberikan semua fitur yang diperlukan untuk mempelajari karakteristik sensor-sensor cahaya tersebut dengan menggunakan pengatur besar penerangan, dan rangkaian-rangkaian pendukung seperti voltage divider dan low-pass filter.
ABSTRACT
Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR?s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic.;Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR?s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic., Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR’s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic.]"
Universitas Indonesia, 2015
S62560
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herry Sandika
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
TA648
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ahmad Fachri Himawan
"ABSTRAK
Metode pengukuran secara digital menggunakan komputer memiliki beberapa
keunggulan dibandingkan dengan pengukuran dengan cara konvensional yaitu dalam hal fleksibilitas, ketelitian dan kemampuannya dalam menangani besaran-besaran yang kompleks serta berubah-ubah dengan cepat. Sistem instrumen alat pengukur kekuatan tanah triaxial menggunakan sistem akuisisi data guna mengambil dan menyimpan data hasil pengukuran secara periodik serta mengendalikan proses pengukuran. Sistem akuisisi data ini terdiri atas sistem elektronis yang berisi perangkat keras dan sistem komputer yang berisi perangkat lunak. Karena sistem akuisisi data tersebut tidak tersedia di pasar dalam negeri, maka perlu adanya usaha untuk merancang dan membuat
sendiri perangkat keras dan perangkat lunaknya untuk memenuhi kebutuhan yang ada.
Perangkat keras sistem akuisisi data triaxial dibuat menggunakan modul~modul
akuisisi data dari advantech (ADAM) serta beberapa rangkaian elektronika yang dirakit dengan komponen-komponen yang tersedia di pasar lokal. Perangkat lunak sistem ini dikembangkan menggunakan paket pemprograman visual Borland Delphi versi 5.Setelah dilakukan proses perancangan, pembuatan, uji coba dan analisis, ternyataperangkat keras dan perangkat lunak sistem akuisisi data triaxial dapat berfungsi dengan baik dan dapat digunakan dalam percobaan pengukuran kekuatan tanah.

"
2001
S39807
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wanto
"Dalam tugas akhir ini telah dirancang dan dibuat suatu sistem untuk mengukur besarnya intensitas cahaya tampak (visible light). Sistem tersebut berbasis pada mikrokontroler sebagai pengolah data. Selanjutnya hasil pengukuran ditampilkan pada sebuah layar LCD.
Untuk dapat mengetahui informasi mengenai intensitas cahaya, maka dibutuhkan suatu sistem perangkat keras pengukuran yang dilengkapi dengan perangkat lunak. Perangkat keras yang digunakan yaitu rangkaian sensor cahaya LDR (Light Dependent Resistor) untuk mendeteksi intensitas cahaya, kemudian mengkonversikannya menjadi tegangan. Rangkaian ADC (Analog to Digital Converter) untuk mengubah tegangan analog yang berasal dari rangkaian sensor cahaya, untuk menjadi data pengukuran digital. Sistem mikrokontroler untuk mengolah dan mengkalibrasi data hasil pengukuran tersebut untuk ditampilkan di layar LCD (Liquid Crystal Display).
Karena keterbatasan tidak tersedianya monokromator, maka tidak dapat dilaksanakan pengukuran panjang gelombang sinar yang diamati. Selanjutnya, untuk mempermudah pengukuran intensitas cahaya, dikelompokan dalam beberapa warna yaitu cahaya putih, merah, kuning, hijau, dan biru. Untuk mendekati nilai yang sebenarnya telah dilakukan kalibrasi untuk masing-masing warna sesuai dengan spektrum sensitivitas LDR.

An instrument prototype for visible light intensity measurement has been designed and fabricated for the purpose of final project to obtain Sarjana Teknik degree of Electrical Engineering, Universitas Indonesia. The instrument is mainly supported by microcontroller AT89S52 system as the measurement data processing center. Further more, the result of the measurement processing is displayed on LCD screen.
To obtain the light intensity measurement data, it is required an instrument system which consists of microcontroller system, light dependent resistor (LDR) circuit to detect light intensity and convert it to analog voltage, and analog to digital converter (ADC) to convert the analog voltage from LDR circuit to be digital measured data for microcontroller. Furthermore, the microcontroller will process and calibrate the measurement data and diplays the data to the ouput screen.
Due to limited facilities, for example unavailability of monochromator, the wavelength measurement cannot be conducted. Moreover, to simplify the light intensity measurement for specific color light, the light is grouped into several groups of color such as white, red, yellow, green and blue. To obtain a better accuracy, it has been done intensity callibatrion for every group of color according to LDR sensitivity spectrum and the callibration data is used in microcontroller system to determine accurate measurement data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40437
UI - Skripsi Open  Universitas Indonesia Library
cover
Bayu Bumida Stani
"Usia baterai yang terbatas dari embedded system dan mobile devices mengakibatkan baterai itu harus sering di recharge atau solusi yang lain adalah dengan mengganti baterai tersebut. Salah satu solusi untuk membuat embedded system dan personal device dapat beroperasi terus-menerus, yaitu dengan memanfaatkan energi matahari dan sistem fotovoltaik. Skripsi ini bertujuan untuk merancang bangun modul penyuplai daya dengan memanfaatkan energi matahari sebagai pengganti baterai untuk modern embedded system dan aplikasi-aplikasi daya rendah. Salah satu contoh dari embedded system daya rendah adalah sensor node IEEE 802.15.4/Zigbee yang digunakan pada WSN. Embedded system ini berbasis pada Freescale System-in-Package MC13213 dan sudah termasuk RF transceiver untuk aplikasi-aplikasi ZigBee. Daya yang dibutuhkan oleh alat ini adalah < 1mW untuk keadaan stand-by dan mencapai sekitar 50mW untuk keadaan aktif. Modul penyuplai daya ini dapat dibagi menjadi tiga bagian, yaitu power supply, rangkaian input (maximum power point tracker), dan rangkaian output. Modul ini ditargetkan untuk menyuplai embedded system daya rendah khususnya wireless sensor node dengan tegangan kerja 3,3 volt dan konsumsi daya sampai dengan 50 miliwatt. ;The limited battery lifetime of modern embedded systems and mobile devices necessitates frequent battery recharging or replacement. One of the solution to make embedded systems and personal devices operate continuously is utilizing the solar energy and photovoltaic system. This final project aims to design a power supply module by utilizing solar energy as a replacement of battery for modern embedded system and low power application. The example of low power embedded system is IEEE 802.15.4/ZigBee sensor node used in Wireless Sensor Network (WSN). This embedded system is based on Freescale System-in-Package MC13213 including an IEEE 802.15.4 RF transceiver for ZigBee applications. The power consumption of the wireless device provided by the manufacturer with sensors and microcontroller in standby condition is < 1wW, while the power consumption reaches approximately 50mW when microcontroller and sensors are active. This power supply module can be divided into three parts, power supply circuit, input circuit (maximum power point tracker), and the output circuit. This module is targeted to supply low power embedded systems, especially wireless sensor node with the operating voltage of 3.3 volt and the power consumption up to 50 mW.

The limited battery lifetime of modern embedded systems and mobile devices necessitates frequent battery recharging or replacement. One of the solution to make embedded systems and personal devices operate continuously is utilizing the solar energy and photovoltaic system. This final project aims to design a power supply module by utilizing solar energy as a replacement of battery for modern embedded system and low power application. The example of low power embedded system is IEEE 802.15.4/ZigBee sensor node used in Wireless Sensor Network (WSN). This embedded system is based on Freescale System-in-Package MC13213 including an IEEE 802.15.4 RF transceiver for ZigBee applications. The power consumption of the wireless device provided by the manufacturer with sensors and microcontroller in standby condition is < 1wW, while the power consumption reaches approximately 50mW when microcontroller and sensors are active. This power supply module can be divided into three parts, power supply circuit, input circuit (maximum power point tracker), and the output circuit. This module is targeted to supply low power embedded systems, especially wireless sensor node with the operating voltage of 3.3 volt and the power consumption up to 50 mW."
2011
S124
UI - Skripsi Open  Universitas Indonesia Library
cover
Maulana Fakih Latief
"Telah dikembangkan sebuah sistem instrumentasi pengukur level cairan pada suatu wadah menggunakan sensor kapasitif. Sensor terdiri dari dua pelat elektroda tembaga yang ditempelkan pada wadah yang non-konduktif. Pengukuran dilakukan dengan menginjeksikan sinyal gelombang-sinus pada elektroda pengirim dan kemudian mengukur besar sinyal yang diterima di elektroda penerima. Sinyal sinus yang disuntikkan berorde Ratusan-Kilo Hertz untuk mendapatkan respon cepat terhadap perubahan kondisi level. Data ketinggian level cairan adalah konversi dari perbandingan tegangan-RMS sinyal yang diterima terhadap sinyal yang dikirimkan. Sinyal pada elektroda penerima akan diteruskan ke sistem pengkodisi sinyal yang terdiri dari penyaring tapis rendah, RMS to DC Converter, ADC, dan antarmuka USB.

Liquid level measurement instrumentation system in a container using capacitive sensor has been developed. The sensor consisting of two copper electrode plates mounted to non-conductive containers. Measurements were performed by injecting a sine-wave signal to the transmitter electrode and then measures the received signal at the receiver electrode. The injected sine signal uses Hundreds of Kilo-Hertz order to get a quick response of the changes in the level condition. Liquid level height data is the conversion of voltage-RMS ratio of the received signal to the transmitted signal. Signal at the receiver electrode is passed to the signal conditioning system consisting of a low filter filter, RMS to DC Converter, ADC, and a USB interface."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Raditya Gumelar
"Pada skripsi ini dilakukan rancang bangun perangkat pengukur berat dengan memanfaatkan sensor serat optik. Sensor bekerja berdasarkan prinsip rugi-rugi macrobending pada serat optik jika mengalami gangguan. Sinyal keluaran serat optik yang diintegrasikan pada karet elastis selanjutnya diolah menggunakan Arduino Nano-ATmega328P beserta rangkaian pendukung.
Dari hasil pengujian untuk skala laboratorium, ditunjukkan bahwa perangkat bekerja dengan baik, yaitu menghasilkan keluaran yang berbanding lurus dengan masukan untuk rentang berat 0-2500 gram dengan resolusi 50 gram.

In this undergraduate thesis, a Body Weight Measuring Device Using Fiber Optic Sensor is designed. The fiber optic sensor works based on macrobending loses principle on optical fiber when experiencing interference. The output signal of the fiber integrated to elastic rubber band then processed using Arduino Nano-ATmega328P and supporting circuit.
From the test result in laboratory scale, it is shown that the designed device, can perform well in producing a proportionally linear output for 0 - 2500 gram weight range with 50 gram resolution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S36315
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 2008
TA601
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>