Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 137622 dokumen yang sesuai dengan query
cover
Ronny
"Integrasi antara data log dengan data seismik merupakan salah satu metode untuk melakukan prediksi terhadap suatu parameter log dalam area survei seismik. Analisa data dalam metode ini terdiri atas serangkaian data target log, yang dalam hal ini adalah log porositas dari beberapa sumur yang dikorelasikan dengan beberapa atribut seismik dari volume seismik 3D untuk menurunkan transformasi multi atribut dalam bentuk linear maupun non linear yang menghasilkan pemodelan terhadap parameter target log. Dalam transformasi linear, dihasilkan serangkaian konstanta bobot melalui metode least-square. Sedangkan pada transformasi non-linear diperlukan aplikasi Artificial Neural Network yang salah satunya adalah Probabilistic Neural Network (PNN). Untuk mengkalkulasi keberhasilan dari penurunan transformasi multi atribut, digunakan metode validasi silang. Nilai error yang dihasilkan melalui proses validasi ini menggambarkan nilai prediksi error ketika hasil transformasi multi atribut tersebut diaplikasikan kedalam volume seismik. Setelah didapatkan nilai korelasi yang optimum antara pemodelan log dengan log sebenarnya, selanjutnya dapat dibuat peta sayatan data (data slicing) yang menunjukkan penyebaran pororitas secara lateral yang dapat membantu menentukan zona persebaran porsitas tinggi yang merupakan indikasi prospek area reservoir hidrokarbon.

Integration between log data and seismic data is one of the method to predict log properties in seismic survey area. Data analysis in this method consists of series of target log data, which in this case is porosity log from some wells which correlate with seismic attributes from 3D seismic volume to derive linear or non linear multi attribute transform to product a predicted target log properties. In linear mode, the transformation consists of series of wheights derived by Least Square minimization. In non linear mode, application of Artificial Neural Network (ANN) is needed. One of the ANN which used in this research is Probabilistic Neural Network (PNN). To estimate the reliability of the derived multi attribute transform, crossvalidation method is used. Error that product from this validation method illustrate like prediction error when the transform is applied to seismic volume. After correlation value between predicted log and actual log obtained optimumly, a data slicing map showing the spreading of porosity lateraly can be made. This data slicing map abble to assist to determine high porosity spreading zone which is indicates the prospect area of hydrocarbon reservoir."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S28895
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joko Ariyanto
"Ada banyak attributattribut yang dapat diekstrak dari data seismik dan pemilihan attribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa attribut tidak memberikan kontribusi dalam pengelompokan litologi. Untuk mengurangi hal itu, penulis menggunakan Principal Component Analysis (PCA) pada data seismik dan generalized principal component analysis (GPCA) pada attribut seismik. Analisis GPCA terdiri dari dua langkah: Pertama, meningkatkan variasi data dengan menggunakan principal component analysis sehingga pemisahan data yang lebih baik bisa didapatkan, dan kedua, memilih attribut yang telah terotasi berdasarkan urutan nilai eigen valuenya yang dihitung sebelumnya. Tujuan analisis PCA adalah untuk menghilangkan komponen bising yang bersifat acak yang terdapat di dalam data seismik sedangkan tujuan analisis GPCA adalah untuk menghasilkan atribut seismik yang mampu memberikan kontribusi untuk clustering.
Cluster analisis dari attribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismic yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N attribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan pusat awan data (centroid) dapat dilakukan melalui proses yang iteratif (unsupervised). Algoritma clustering yang dipakai adalah Kmeans clustering. Hasil clustering yang didapat menunjukkan konsistensi dengan peta litologi yang sudah ada yang di intrepetasi dari korelasi data sumur.

There are a lot of seismic attributes that can be generated from seismic data and choosing attributes that mainly affect the distribution of the lithology clouds is not a simple task to do due to the fact that some attributes may not contribute to the separation of the clusters. To reduce that difficulty, the authors implemented a principal component analysis (PCA) of seismic data and a generalized principal components analysis (GPCA) of seismic attributes. This GPCA analyisis consists of two steps : First, increasing the variation of data points using the principal component method such that better cluster separation can be obtained, and second, selecting contributing rotated attributes based on the rank of previously calculated eigen values. The aim of PCA analysis is to reduce noise effect which random in seismic data while the aim of GPCA analysis is to result seismic attributes which give contribution to clustering.
Cluster analysis of seismic attributes is a tool to classify lithologies brought by recorded and processed seismic data. In principal, cluster analysis projects N seismic attributes into Ndimension coordinate system resulting with K groups of clouds representing different lithologies. Identification of the center of the clouds and its related samples can be done differently by iterative process (unsupervised). Clustering algorithm is Kmeans clustering. The results of clustering show consistency with existing lithology map interpreted from well correlation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S28860
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simamora, Christian M.
"Dalam tesis ini, penulis mengemukakan metode sederhana untuk menguraikan jenis-jenis batuan dari data seismik full stack. Untuk mencapai hal tersebut, pertama, korelasi-silang antara well traces dan data seismik dikalkulasi. Trace-trace yang ada pada setiap sumur-sumur diambil sebagai trace referensi. Setiap well traces di-korelasi-silang dengan data seismic yang telah ada, dimana hasilnya dapat digunakan sebagai atribut seismik. Semua atribut yang telah dikalkulasi dari tracetrace referensi kemudian digunakan sebagai input untuk proses analisis gugus.
Metode clustering yang telah digunakan dalam tesis ini adalah kmeans clustering. Kedua, perubahan kemiringan, intercept, korelasi koefisien, dan, deviasi standar, dari setiap sumur-sumur yang telah di-PCA(Principal Component Analysis) digunakan sebagai input untuk proses analisis gugus. Mengimplementasikan metode ini telah memunculkan horizon based analysis dengan mudah.
Metode ini telah diterapkan pada data seismic fullstack dan informasi sumur pada lapangan Boonsville. Hasil menunjukkan konsistensi dengan keberadaan peta jenis-jenis batuan yang diinterpretasikan dari well correlation.

In this thesis, the authors present a simple method to extract the lithotypes from fullstack seismic data. To achieve that, first the cross-correlation between well traces and seismic data was calculated. The traces at the wells were taken as reference traces. Each well trace was then cross-correlated with the existing seismic data in which the result can be treated as a seismic attribute. All calculated attributes from all reference traces were then used as inputs for a cluster analysis process.
The method of cluster analysis which has been used in this thesis is k-means clustering. Second, a gradient, an intercept, a correlation coefficient, and deviation standard from the well that have been PCA-ed (Principal Component Analysis) is used as input for cluster analysis. Implementing this method has simply allowed for a horizon based analysis.
The method has been applied to fullstack seismic data and wells information in Boonsville field. Results show consistency with existing litho logy map interpreted from well correlation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S28856
UI - Skripsi Membership  Universitas Indonesia Library
cover
Isfan Hany Yaman
"Cluster analisis dari atribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismik yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N atribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan center dari data dapat dilakukan melalui proses iterasi yang centernya tidak ditentukan (unsupervised), atau dengan menentukan posisi awal center dari informasi yang diketahui yang kemudian berubah-rubah karena proses iterasi (semi-supervised). Informasi yang diketahui ini misalnya dapat berasal dari atribut yang diekstrak pada posisi sumur.
Ada banyak atribut-atribut yang dapat diekstrak dari data seismik dan pemilihan atribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa atribut tidak memberikan kontribusi dalam pengelompokkan litologi. Untuk mengurangi hal itu, penulis menggunakan generalized principal component analysis pada atribut seismik. Metode ini terdiri dari dua langkah; Pertama, meningkatkan variasi data dengan menggunakan metode principal komponen sehingga pemisahan data yang lebih baik bisa didapatkan, dan kedua, memilih atribut yang telah terotasi yang memberikan kontribusi untuk clustering berdasarkan urutan nilai eigen valuenya. Dalam penelitian ini penulis menggunakan metode semi-supervised.
Alasan penggunaan metode tersebut adalah posisi sumur-sumur yang di bor mungkin saja berada pada tepi reservoar yang tidak mencerminkan sifat fisis batuan secara ratarata pada daerah reservoir tersebut. Kemudian jika posisi center dibuat tetap dapat mengakibatkan distorsi informasi secara umum mengenai sifat fisis batuan. Data sesimik full stack dengan beberapa sumur yang ada diproses untuk menghasilkan litologi map dari area tersebut. Hasil yang didapatkan menunjukkan konsistensi dengan peta litologi yang sudah ada yang di intrepetasi dari korelasi data sumur.

Cluster analysis of seismic attributes is a tool to classify lithologies brought by recorded and processed seismic data. In principal, cluster analysis projects N seismic attributes into N-dimension coordinate system resulting with K groups of clouds representing different lithologies. Identification of the center of the clouds and its related samples can be done differently by iterative process (unsupervised), or by defining initial centers from known information and then updating them through iterative process (semi-supervised). The information may come, for example, from attributes at well locations.
There are a lot of seismic attributes that can be generated from seismic data and choosing attributes that mainly affect the distribution of the lithology clouds is not a simple task to do due to the fact that some attributes may not contribute to the separation of the clusters. To reduce that difficulty, the authors implemented a generalized principal components analysis of seismic attributes. This method consists of two steps : First, increasing the variation of data points using the principal component method such that better cluster separation can be obtained, and second, selecting contributing rotated attributes based on the rank of previously calculated eigen values.
In this work, the authors using the semi-supervised methods. The reason to use those methods is that wells may be drilled at the edge of the reservoir where the rock property at that location shows deviation from the average rock property of the reservoir. Hence, fixing the center may distort the general information of rock property of the reservoir. Full stack seismic data from Boonsville area with some existing wells were processed to generate lithology map of that area. Results show consistency with existing lithology map interpreted from well correlation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S28859
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Haris
"Transforming seismic data into lateral sonic log properties was carried out successfully using the artificial neural network (ANN). This work is related to a detailed investigation of reservoir properties that requires complete data. The objective of this paper is to build a geological model that has vertical and lateral distribution representing the framework of geological change of sonic log properties. However, detailed well log data analysis only provides information of vertical distribution, therefore effective application of seismic data is required to construct a spatial distribution model that represents the lateral sonic log properties away from a well. This paper presents a strategy for transforming seismic data into pseudo-sonic log data by using ANN approaches rather than a simple approach of empirical relationship. The ANN approach defines a specific function that correlates a series of attributes generated from seismic data, such as amplitude envelope, instantaneous frequency, instantaneous phase, and acoustic impedance by a training mechanism based on the sonic log data as a target parameter. The probabilistic neural network (PNN) as one ANN algorithm is applied to transform seismic attributes into a lateral sonic log. An example of an ANN approach using a real data set from the Indonesian field was presented. The pseudo-sonic log shows a good agreement with the real sonic log data, which is represented with a correlation coefficient of 0.91. Further, the seismic line data was successfully transformed into the pseudo lateral sonic log data that covers the whole seismic line."
Depok: Faculty of Engineering, Universitas Indonesia, 2018
UI-IJTECH 9:3 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
M. Rizqy Septyandy
"Atribut seismik merupakan informasi yang diperoleh dari data seismik yang dapat digunakan untuk memprediksi suatu target petrofisika baik secara numerik maupun analitik. Walaupun hubungan antara atribut seismik dengan karakteristik suatu batuan dan reservoar tidak dapat didefinisikan secara spesifik, banyak sumber yang menunjukkan bahwa atribut seismik merupakan salah satu parameter untuk mengklasifikasikan karakter dari suatu batuan.
Skripsi ini menunjukkan hasil proses yang dilakukan oleh ANN yang dapat membuat suatu hubungan antara atribut seismik dengan saturasi air (Sw). Tujuan utama penelitian ini adalah memprediksi penyebaran lateral saturasi air (Sw) yang diperoleh dari atribut seismik. Pada tahap awal, hubungan antara log saturasi air (Sw) dengan satu tras seismik yang berhimpit ditentukan dengan menggunakan metode ANN. Setelah jaringan terbentuk, metode tersebut diterapkan untuk seluruh tras seismik yang ada pada suatu volume seismik. Atribut seismik yang dijadikan masukan adalah amplitudo, impedansi akustik, frekuensi sesaat, dan kuat refleksi (amplitudo sesaat).
Jaringan yang digunakan adalah Backpropagation dengan 5 lapisan yang masing-masing memiliki 40, 30, 20, 10 dan 1 neuron. Metode pelatihannya menggunakan metode resilent backpropagation. Hasil proses jaringan ini memiliki nilai korelasi 96 % dengan nilai validasi sebesar 60 % dan nilai rata-rata error kuadrat (rmse) 3.01 %.

A seismic attribute information, which is obtained from seismic data, can be used to predict petrophysical properties analytically as well as numerically. Although the relationship between seismic attributes with rock properties can not be specifically defined, many papers indicated that seismic attributes can be used to characterize the rock.
This work shows the application of ANN algorithm to generate the relationship between seismic attributes and water saturation (Sw). The main objective of this study is to predict the lateral distribution of water saturation (Sw), which is derived from seismic data. The first step, the relationship between water saturation (Sw) and a trace seismic, which coincide with well log data, is determined using the ANN. After the network is defined, the method can then be applied to all existing seismic traces in a seismic volume. The input of seismic attributes is amplitude, acoustic impedance, instantaneous frequency, and reflection strength (amplitude envelope).
We use bacpropagation network with 5 layers each having 40, 30, 20, 10 and 1 neuron. The training method is resilent backpropagation. This network produces good agreement between predicted water saturation (Sw) and targeted water saturation (Sw), which is indicated by correlation coefficient of 96 %, validation coefficient of 60 % and root mean square error (rmse) of 3.01 %.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S2000
UI - Skripsi Open  Universitas Indonesia Library
cover
Santi Widayati
"Lapangan FM merupakan salah satu lapangan penghasil hidrokarbon yang terletak di Cekungan Jawa Barat Utara. Salah satu Formasi yang berpotensi sebagai penghasil hidrokarbon adalah Formasi Cibulakan berupa batupasir dan batugamping yang menjadi reservoar objektif. Untuk memprediksi penyebaran reservoar batupasir digunakan metode multi-atribut seismik. Metode multi-atribut merupakan metode untuk memprediksi reservoar. Prediksi tersebut didapat dari hubungan fisis diaplikasikan dengan properti atribut dari data seismik.
Berdasarkan analisa crosplot diketahui bahwa log gamma-ray dan density merupakan parameter yang sensitif terhadap keberadaan reservoar batupasir. Metode multi-atribut digunakan dalam membuat volume pseudo gamma-ray dan density. Kombinasi antara gamma-ray dengan density dapat memisahkan dengan baik antara batupasir, batu gamping dan batu lempung.
Hasil pemetaan menunjukkan reservoar batupasir terdistribusi pada daerah Tinggian. Hasil penelitian ini dapat digunakan untuk eksplorasi lebih lanjut dalam penyebaran reservoar pada Formasi Cibulakan di Lapangan FM.

Field FM is one of the hydrocarbon-producing field located in the North West Java Basin. One of the potential formation of hydrocarbon-producing formations are sandstones and limestones Cibulakan form the reservoir objective. To predict the spread of reservoir sandstones research using multi-attribute seismic methods. Multi-attribute method is a method for predicting reservoir parameters. The predictions obtained from the physical relationship was applied to the property attribute of the seismic data.
Based on the analysis crosplot known that gamma-ray logs and density are parameters which are sensitive to the presence of reservoir sandstones. Multi-attribute method is used to predict the pseudo volume of gamma-ray and density. The combination of gamma-ray logs with density can separate well between sandstone, limestone and claystone.
Mapping results indicate reservoir sandstones in the area of distributed Tinggian. The results can be used for further exploration in the spread of the Formation reservoir in the Field Cibulakan FM.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Agung Nugraha
"Penelitian ini bertujuan untuk membuat model peramalan yang efektif dalam meramalkan penjualan produk mobil dalam segmen B2B (Business to Business) agar didapatkan estimasi penjualan produk di masa mendatang. Peneilitian ini menggunakan regresi linear berganda dan jaringan syaraf tiruan yang dioptimasi dengan algoritma genetika.  Faktor peramalan penjualan mobil pada umumnya meliputi penjualan mobil secara nasional, Indeks Harga konsumen, Indeks Kepercayaan Konsumen, Laju Inflasi, Produk Domestik Bruto (GDP), dan  Harga Bahan Bakar Minyak (BBM). Penulis juga telah mendapatkan faktor yang berpengaruh dalam penjualan segmen B2B dengan menyebarkan survey (kuesioner) kepada 102 orang DMU (Decision Making Unit) yang memiliki keputusan dalam pembelanjaan mobil di perusahaan mereka. Kemudian hasil scoring dari kuesioner tersebut kami bobotkan pada data training dan simulasi pada Jaringan Syaraf Tiruan. Hasil penelitian ini menunjukkan bahwa Jaringan Syaraf Tiruan yang dioptimasi  dengan Algoritma Genetika dengan 18 Variabel dapat meningkatkan akurasi peramalan penjualan mobil segmen B2B dengan error 1,3503%, jika dibandingkan nilai error pada Jaringan Syaraf Tiruan biasa sebesar 4,173% dan Regresi Linear Berganda sebesar 17,68%.

ABSTRACT
This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business-to-Business) in order to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Car sales forecasting factors generally include National car sales, Consumer Price Index, Consumer Confidence Index, Inflation Rate, Gross Domestic Product (GDP), and Gasoline Price. The author has also obtained an influential factor in the sale of B2B segments by distributing surveys (questionnaires) to 102 DMU (Decision Making Unit) who have a decision in car purchasing at their company. Then the results of the scoring from the questionnaire are weighted to the training and simulation data on the Artificial Neural Network. The results of this study indicate that the Artificial Neural Network optimized with Genetic Algorithm can improve the accuracy of forecasting B2B segment car sales with an error of 1.3503%, when compared to the error value in the usual Artificial Neural Network of 4.173% and Multiple Linear Regression of 17.68 %."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T54561
UI - Tesis Membership  Universitas Indonesia Library
cover
Yusuf Qaradhawi
"Akurasi peramalan permintaan sangat mempengaruhi kinerja sistem rantai pasok yang pada akhirnya berdampak langsung terhadap kesuksesan bisnis perusahaan. Peramalan yang akurat akan mampu memanfaatkan sumber daya perusahaan secara effisien. Namun, banyak perusahaan yang mengakui bahwa proses peramalan mereka tidak berjalan sebaik yang mereka harapkan. Kebanyakan perusahaan hanya menggunakan data masa lalu untuk meramalkan permintaan dimasa mendatang. Padahal data permintaan masa lalu tidak cukup untuk dijadikan dasar perkiraan permintaan dimasa mendatang. Terdapat beberapa independent variabel yang mempengaruhi jumlah permintaan produk seperti iklim, promosi, kanibalisasi, hari raya, harga produk, jumlah toko, jumlah penduduk dan pendapatan yang selalu berubah seiring waktu. Oleh karena itu perlu dibangun model yang mampu mengakomodasi fenomena tersebut. Metode yang diusulkan adalah regresi linier berganda, fuzzy regresi linier berganda dan jaringan saraf tiruan. Makalah ini menyajikan langkah-langkah peramalan yang disertai studi kasus pada produk insektisida. Hasilnya menunjukan bahwa peramalan yang dihasilkan metode ini lebih baik dari pada hasil peramalan yang dilakukan perusahaan.

The accuracy of demand forecasting greatly influences the performance of the supply chain system which ultimately has a direct impact on the business perfomance. Accurate forecasting will be able to utilize company resources efficiently. However, many companies admit that their forecasting process is not going as well as they expected. Most companies only use historical data to forecast future demand. Whereas past demand data is not enough to be used as the basis for future forecasts. There are several independent variables that affect the number of product demand such as climate, promotion, cannibalization, holidays, product prices, number of stores, population and income that always change over time. Therefore it is necessary to build a model that is able to accommodate this phenomenon. The proposed method is multi linear regression, fuzzy multi linear regression and artificial neural networks. This paper presents forecasting steps accompanied by case studies on insecticide products. The results shown that the proposed forecasting method more accurate than company forecast."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53406
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Al Rasyid
"Semakin meningkatnya kebutuhan masyarakat pada energi semakin mendorong berkembangnya teori manajemen permintaan energi. Indonesia sebagai negarayang mengalami peningkatan kebutuhan konsumsi premium masih membutuhkan perbaikan dalam tata kelolakebijakan energinya. Salahsatunya dalam melakukan peramalan. Oleh karena itu,Dibutuhkan suatu cara agar dapat melakukan peramalan konsumsi BBM premium di Indonesia.Dalam penelitian ini, peramalan dilakukandengan dua cara. Yaitu dengan menggunakan Multi Linear Regrresi dan Neural network. Hasil yang didapat menunjukkan bahwa metode Multi linear regresi memperoleh keakuratan yang lebih baik dibanding Neural network.

The increasing of energy consumption encouraging the development of energy demand management theory. Indonesia as a country which have increasing consumption premium fuel in few years is need to improve their energy policy, especially in forecasting. Therefore, there are need a methode to forecast premium demand in Indonesia. In this research, forecasting is done with using Multi Linear Regression and Neural Network. The result is the accuration of Multi Linear Regression methode better than the accuration of Neural network methode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45434
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>