Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 161439 dokumen yang sesuai dengan query
cover
cover
Waas, Arisha Octiany
"Generalized Assignment Problem (GAP) adalah masalah penugasan sehimpunan berhingga tugas ke sehimpunan berhingga agen. Setiap tugas mempunyai bobot dan biaya penyelesaian yang mungkin berbeda untuk setiap agen. Setiap agen mempunyai kapasitas sumber daya dan tidak boleh mengerjakan tugas melebihi kapasitasnya. Pada skripsi ini dilihat kinerja dari algoritma genetik dalam menyelesaikan GAP. Algoritma genetik terinspirasi oleh teori evolusi biologi. Operator utama yang digunakan adalah binary tournament selection, one point crossover, dan swap mutation. Untuk meningkatkan kinerja, ditambahkan local improvement steps dan replacement scheme. Kinerja algoritma genetik diukur dari kedekatan solusi yang diperoleh dengan Best Known Solution (BKS) dari masalah penguji yang diambil dari OR Library. Selain itu, juga dilihat pengaruh perubahan nilai probabilitas crossover PC dan probabilitas mutasi Pm terhadap kinerja algoritma genetik. Berdasarkan percobaan, disimpulkan bahwa kinerja algoritma genetik dalam menyelesaikan GAP cukup baik, dengan kesalahan relatif nilai fungsi tujuan solusi terbaik terhadap BKS cukup kecil, yaitu tidak lebih dari 0.03. Dari percobaan mengubah nilai parameter, diperoleh dengan PC = 0.6, nilai Pm yang cukup baik adalah 0.25 ? 0.3. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S27616
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandy Sulistyo
"Passenger boarding merupakan proses masuknya para penumpang ke dalam pesawat. Passenger boarding perlu dikendalikan oleh maskapai penerbangan supaya interferences yang terjadi ketika passenger boarding berlangsung tidak semakin banyak. Interferences didefinisikan sebagai gangguan yang terjadi akibat adanya penumpang yang terhalang oleh penumpang lainnya ketika ia ingin mencapai tempat duduknya. Strategi terbaik dibutuhkan untuk dapat mengurangi interferences yang terjadi sehingga passenger boarding lebih terkendali. Strategi dilakukan dengan mengelompokkan penumpang ke dalam beberapa grup dan masing-masing grup akan masuk ke dalam pesawat dengan urutan tertentu.
Pada skripsi ini masalah penentuan strategi passenger boarding akan dimodelkan ke dalam pemrograman non linier bilangan bulat campuran dan diselesaikan melalui algoritma genetik. Pesawat yang digunakan dalam skripsi ini adalah Airbus-320. Sementara untuk menerapkan algoritma genetik sebagai penyelesaian masalah ini digunakan metode seleksi deterministik, metode one cut point crossover dan metode mutasi dengan penggantian gen secara acak.
Pada akhirnya diperoleh bahwa strategi terbaik adalah strategi dengan total interferences minimum berdasarkan nilai, dimana direpresentasikan sebagai persentase penumpang penyebab interferences yang berasal dari grup sebelumnya. Ketika nilai kecil, strategi cenderung mendekati strategi window to aisle. Sementara ketika nilai besar, strategi cenderung mendekati strategi back to front.

Passenger boarding is a process when the passengers get access to airplane. Passenger boarding have to be controlled by an airline company so that interferences of passenger boarding won't increased. Interferences are defined as an instance of passenger blocking another passenger's access to his (or her) seat. The best strategy is needed to reduce the interferences which happened so passenger boarding will be more controlled. The strategy is apllied by grouping the passenger in specific order to get access the airplane.
This skripsi tells about problem on how to choose a passenger boarding strategy will be represented as a model of mixed integer non linear programming and solved by genetic algorithm. Airbus-320 will be used in this skripsi. Deterministic selection, one cut point crossover and random gen replacement mutation will be used in genetic algorithm.
In conclusion, the best strategy is a strategy that has minimum number of total interferences based on, which is represented as a percentage of passenger who caused interferences from the previous group. When has a large value, the strategy aprroach to "window to aisle strategy". Meanwhile has a low value, the strategy approach to "back to front strategy".
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S53302
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Putra Pradana
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51768
UI - Skripsi Open  Universitas Indonesia Library
cover
Betrianis
"Tabu Search merupakan salah satu metode pemecahan permasalahan optimasi kombinatorial yang tergabung ke dalam local search methods. Metode ini bertujuan untuk mengefektifkan proses pencarian solusi terbaik dari suatu permasalahan optimasi kombinatorial yang berskala besar (bersifat np-hard), contohnya permasalahan penjadwalan job shop, dengan waktu komputasi yang relatif lebih kecil, namun tanpa ada jaminan akan tercapainya solusi yang optimal.
Dalam penelitian ini, Tabu search diterapkan pada sebuah permasalahan penjadwalan job shop dengan tujuan untuk meminimalkan waktu proses total atau makespan (Cmax). Penjadwalan menggunakan algoritma Tabu Search ini dilakukan terhadap tiga kasus, yaitu paket pesanan bulan September, Oktober dan Nopember, dimana untuk setiap paket pesanan dilakukan variasi terhadap initial solution dan panjang tabu list.
Hasil penjadwalan ini kemudian dibandingkan dengan hasil penjadwalan lain yang menggunakan 4 macam metode basic dispatching rules , yaitu Shortest Processing Time (SPT), Earliest Due Date (EDD), Most Work Remaining (MWKR) dan First Come First Served (FCFS). Hasil pengolahan data menunjukkan bahwa penjadwalan yang menggunakan algoritma Tabu Search sensitif terhadap perubahan yang diberikan pada variabel yang ada didalamnya dan makespan yang dihasilkan secara keseluruhan lebih kecil apabila dibandingkan dengan hasil penjadwalan menggunakan ke-4 metode lainnya.

Application of Tabu Search Algorithm in Job Shop Scheduling. Tabu Search is one of local search methods which is used to solve the combinatorial optimization problem. This method aimed is to make the searching process of the best solution in a complex combinatorial optimization problem(np hard), ex : job shop scheduling problem, became more effective, in a less computational time but with no guarantee to optimum solution.
In this paper, tabu search is used to solve the job shop scheduling problem consists of 3 (three) cases, which is ordering package of September, October and November with objective of minimizing makespan (Cmax). For each ordering package, there is a combination for initial solution and tabu list length.
These result then compared with 4 (four) other methods using basic dispatching rules such as Shortest Processing Time (SPT), Earliest Due Date (EDD), Most Work Remaining (MWKR) dan First Come First Served (FCFS). Scheduling used Tabu Search Algorithm is sensitive for variables changes and gives makespan shorter than scheduling used by other four methods.
"
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Tabu Search merupakan salah satu metode pemecahan permasalahan optirnasi kombinatorial yang tergabung ke dalam local search methods. Metode ini bertujuan untuk mengefektifkan proses pencarian solusi terbaik dari suatu permasalahan optimasi kombinatorial yang berskala besar (bersifat np-hard) dengan waktu komputasi yang relatif lebih kecil, namun tanpa ada jaminan akan tercapainya solusi yang optimal. Dalam penelitian ini, Tabu search diterapkan pada sebuah permasalahan penjadwalan job shop dengan tujuan untuk meminimalkan waktu proses total atau makespan (Cwnr). Penelitian yang dilakukan menggunakan data sekunder, dimana data-data yang didapat merupakan sebuah kasus permasalahan di PT.DC pada tahun 1992. Pengolahan data dilakukan melalui program komputer yang ditulis dnlam bahasa pemograman Pascal, dimana dalam program tersebut terdapat algoritma Tabu Search yang berfungsi melakukan optimasi terhadap permasalahan penjadwalan yang ada. Data yang didapat kemudian diolah menggunakan program komputer tersebut. Hasil penjadwalan menggunakan algoritma Tabu Search ini dilakukan terhadap tiga kasus, yaitu paket pesanan bulan September. Oktober dan Nopember '92, dimana untuk setiap paket pesanan dilakukan variasi terhadap initial solution dan panjang tabu list. Hasil penjadwalan ini kemudian dibandingkan dengan hasil penjadwalan lain yang menggunakan 4 macam metode basic dispatching rules. Hasil pengolahan data menunjukkan bahwa penjadwalan yang menggunakan algoritma Tabu Search memiliki makespan yang lebih kecil apabila dibandingkan dengan ke-4 metode lainnya
"
Fakultas Teknik Universitas Indonesia, 2003
S50109
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Made P.S. Ari
"Treveling salesman problem (TSP) adalah masalah mencari rute perjalanan melewati sejumlah berhingga tempat dengan syarat setiap tempathanya dikunjungi tepat satu kali dan perjalanan berawal dan berakhir di satu tempat. TSP berdasarkan kesimetrian terbagi menjadi TSP simetrik dan TSP asimetrik adalah TSP dimana bobot busur tidak bergantung pada arahan pembusuran ..."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27747
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pandeirot, Lisa Veronica
"Generalized Assignment Problem (GAP) adalah masalah penugasan sejumlah berhingga tugas pada sejumlah berhingga agen, dimana sebuah tugas harus dikerjakan oleh satu agen, tetapi satu agen dapat mengerjakan lebih dari satu tugas. Setiap agen mempunyai kapasitas dan setiap tugas mempunyai bobot, yang mungkin berbeda untuk setiap agen. Pada skripsi ini akan dilihat kinerja dari algoritma MAX-MIN Ant System (MMAS) dengan Local Search dalam menyelesaikan GAP, yang diukur berdasarkan kedekatan solusi yang didapatkan dengan best known solution. MMAS adalah pengembangan dari Ant System Algorithm, yaitu algoritma yang diinspirasikan oleh perilaku semut-semut di dunia nyata. Dalam algoritma ini terdapat parameter ??, Q, ??, dan p0 yang harus ditentukan, yang diambil menurut rekomendasi St??tzle dan Hoos. Lalu nilai dari parameter Q, ??, dan p0 akan diubah untuk mengetahui pengaruhnya terhadap kinerja algoritma MMAS dengan Local Search. Masalah pengujian diambil dari OR-Library. Berdasarkan simulasi, disimpulkan bahwa kinerja algoritma MMAS dengan Local Search dalam menyelesaikan GAP cukup baik dengan error relatif cukup kecil, yaitu tidak lebih dari 0.04 dan perubahan nilai parameter dapat membawa perbaikan pada solusi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S27593
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilma Qonitah
"Pada skripsi ini akan dibahas konsep ride sharing pada taksi, atau disebut juga taxi sharing, yang merupakan salah satu upaya untuk mengatasi masalah kemacetan akibat kurang seimbangnya jumlah kendaraan yang beredar dengan kapasitas jalan yang dapat menampung kendaraan. Pada taxi sharing, penumpang taksi berbagi kendaraan taksi dan biaya perjalanan dengan penumpang lain yang memiliki tempat asal-tujuan yang sama/hampir sama dalam waktu perjalanan yang hampir bersamaan. Pemanfaatan taxi sharing yang mengoptimalkan utilisasi kendaraan taksi, selain dapat mengurangi jumlah kendaraan taksi yang dibutuhkan untuk melayani konsumen dan mengurangi biaya operasional taksi, juga dapat mengurangi penggunaan bahan bakar, yang pada akhirnya mengurangi emisi gas buang kendaraan. Untuk memaksimalkan penggunaan taxi sharing, maka diperlukan pengoptimalan rute taksi dalam melayani penumpang, dimana masalah pencarian rute taxi sharing yang optimal dalam skripsi ini akan dimodelkan dalam bentuk mixed integer programming problem. Permasalahan ini diselesaikan menggunakan algoritma genetika, yang lahir dari sebuah inspirasi teori evolusi Darwin. Algoritma ini digunakan untuk mencari pasangan penumpang yang berbagi layanan taksi dan rute taksi yang optimal. Hasil percobaan dengan menggunakan ukuran populasi (popsize) 10, jumlah generasi 50 dan 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.2 menunjukkan bahwa yang sebelumnya terdapat 8 permintaan taksi dan 8 taksi, operator taksi dapat mengurangi jumlah taksi yang beroperasi sebesar satu taksi. Taksi yang menggunakan konsep taxi sharing, yaitu taksi 5 akan melayani permintaan 2 dan 8, dengan urutan menjemput permintaan 2 lalu 8, lalu mengantarkan permintaan 2 kemudian 8, dengan biaya yang dibayarkan Rp4.200,00 untuk permintaan 2 dan Rp14.700,00 untuk permintaan 8. Maka dari itu, keuntungan operator taksi menjadi lebih besar, penumpang dapat menghemat biaya perjalanan, dan penggunaan kendaraan di jalan berkurang.

This research will discuss about the implementation of taxi ride sharing system or taxi sharing as an attempt to find a solution for traffic jam problem that caused by an unequal number of public transportation units operated in the street and the lack of street capacity which supposed to facilitate it. With the present of taxi sharing system, consument can share their taxi trip with others passengers that going on to same direction at the same time. This solution can give benefit for consuments by sharing the trip cost while at the same time benefitted the public transportations provider to optimalized the utilization of the taxi units and cut off operationalization cost, benefitted society by minimalize the number of cars in the streets and reducing air polution from gasoline consumption. To make this taxi sharing system works it also needed an optimalization in taxi route for each trip service. This research will be trying to solved this challenges by examines the taxi-sharing route services through Mixed Integer Programming Problems. This process will be carried using a genetics algorythm which inspired from Darwin's theory of evolution. This algorithm is aiming to be effectively find and match pairs of passengers who use taxi sharing system and taxi routes. The experiment by using population size (popsize) of 10, number of generations 50 and 100, crossover rate (Cr) 0.7, mutation rate (Mr) 0.2 shows that from 8 taxi units to accomodate 8 taxi requests that have been received before, the taxi provider supposedly be able to effectively reduce the number of taxis into only 7 taxis to carry all of the sharing system passengers that requesting. A taxi that uses taxi sharing system will serve request number 2 and request number 8, by picking up request 2 then 8, then delivering request 2 then 8, with fees paid Rp4.200,00 for request 2 and Rp14.700,00 for request 8. Therefore, the profit of the taxi provider is greater, the passengers can save their trip costs, and the use of vehicles on the road can be decreased."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhrul Hidayat
"Salah satu cara untuk mengatasi masalah kemacetan dan polusi udara akibat penggunaan kendaraan pribadi yang kurang efektif yaitu dengan menggunakan sistem berbagi tumpangan (ride sharing). Ride sharing merupakan suatu sistem dimana pelaku perjalanan berbagi (sharing) kendaraan dengan pelaku perjalanan lain yang memiliki waktu dan lokasi asaltujuan perjalanan yang sama atau hampir sama. Pada skripsi ini akan dibahas masalah optimasi penggunaan sistem berbagi tumpangan dengan kedatangan permintaan layanan baru diketahui saat akan melakukan pelayanan yang disebut juga dynamic ride sharing. Bentuk model matematis dari masalah tersebut akan menggunakan Dial-A-Ride-Problem with Money as incentive (DARP-M), yaitu suatu pengembangan dari DARP dengan menambahkan batasan dalam aspek biaya. Selanjutnya akan digunakan algoritma genetika sebagai metode penyelesaian dari masalah tersebut. Berdasarkan hasil percobaan yang dilakukan dalam skripsi ini diperoleh bahwa algoritma genetika cukup dapat memberikan solusi yang optimal untuk permasalahan tersebut dan dengan menggunakan ride sharing sebagai DARP-M akan memberikan penghematan biaya perjalanan bila dibandingkan tidak menggunakan ride sharing.

One way to overcome congestion and air pollution problems due to ineffective use of private vehicles is to use a ride sharing system. Ride sharing system itself refers to a system in which users share vehicles with other users who have the same or nearly same location of travel origin and destination as well as the same set of time. This thesis discusses the issues of optimizing the use of the ride-sharing system with the arrival of new service requests known when they are about to perform services to customers which is alson known as dynamic ride sharing. The form of a mathematical model used in this thesis to adress such issues is called Dial A Ride Problem with Money as incentives (DARP-M), which is a development of DARP by adding constrains in the aspect of costs. Furthermore, genetic algorithms is used as a method of problem-solving. Based on the results of the experiments conducted in this thesis, it is found that the genetic algorithm can provide an optimal solution to these issues and by using ride sharing, as DARP-M demonstrated, it could provide savings in travel costs when compared to not using ride sharing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>