Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16248 dokumen yang sesuai dengan query
cover
Dene Dian Lestari
"ABSTRAK
Tulisan ini membahas masalah mencari gambaran yang
minimal dari hypergraph berarah. Berarti dicari
hypergraph lain yang ekivalen dengan hypergraph yang
diberikan, dimana hypergraph yang ekivalen ini mempunyai
parameter yang minimal.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1990
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Calvin Charis
"Konsep hypergraph pertama kali dikembangkan oleh Claude Berge pada 1960 untuk menggeneralisasi definisi busur di graf, sehingga alih-alih hanya dapat menghubungkan dua buah simpul secara bersamaan, busur (atau hyperedge) pada hypergraph dapat menghubungkan berapa simpul pun. Pada graf sendiri, keberadaan suatu busur yang tidak selalu bersifat deterministik memberi ruang bagi teori probabilitas maupun teori uncertainty untuk membuat pemetaan φ : E → [0,1] dengan E adalah himpunan busur di suatu graf. Di antara teori probabilitas dan teori uncertainty sendiri terdapat perbedaan, seperti probabilitas memetakan beberapa kejadian yang saling bebas dalam operasi perkalian, sementara uncertainty dalam operasi minimum. Suatu graf yang busur-busurnya mengikuti teori probabilitas (disebut juga graf random) lebih dahulu diperkenalkan oleh Erdo ́s dan Renyi pada 1959. Kemudian Gao & Gao pada 2013 mengaplikasikan teori uncertainty pada graf (disebut juga graf uncertain). Liu, dengan mempertimbangkan bahwa randomness dan uncertainty kerap kali muncul bersamaan, mencetuskan konsep kombinasi teori probabilitas dengan teori uncertainty pada 2013. Teori kombinasi yang disebut teori chance ini berhasil diterapkan juga pada graf dan dikenal sebagai konsep graf uncertain random. Di antara banyak penerapan graf uncertain random, terdapat gagasan pencarian derajat kepercayaan atau indeks dari suatu graf dan salah satunya adalah indeks keterhubungan. Indeks keterhubungan sebagai derajat kepercayaan bahwa suatu graf terhubung dapat dicari menggunakan penghitungan terhadap ukuran chance dari masing-masing busur. Karena konsep graf uncertain random dapat dibatasi pada komponen uncertainty-nya saja, maka definisi indeks keterhubungan juga dapat dimodifikasi agar menjadi well-defined untuk graf uncertain. Sejauh ini kebanyakan penelitian teori uncertainty masih tertuju pada graf klasik dan belum ada penelitian terhadap indeks keterhubungan dari hypergraph meskipun hal ini sangat dibutuhkan sebagai aplikasi dari teori uncertainty. Oleh sebab itu, pada penelitian ini, digeneralisasi konsep indeks keterhubungan pada graf uncertain ke dalam uncertain hypergraph dan dicari sifat-sifatnya, baik yang dianalogikan dari graf uncertain maupun yang baru.

The hypergraph concept was first developed by Claude Berge in 1960 to generalize the definition of an edge in a graph, so that instead of being only capable to simultaneously connect two vertices, the edge (or hyperedge) in hypergraph is capable to connect any number of vertices. In the graph itself, the existence of an edge that is not always deterministic gives room for probability theory as well as uncertainty theory to make a mapping φ : E → [0, 1] where E is the set of edges in a graph. There are differences between probability theory and the uncertainty theory, such as the way of handling the measure of several independent events which in probability is by multiplication operation, while in uncertainty is by minimum operation. A graph whose edges follow probability theory (also called random graph) was first introduced by Erdo ́s and Renyi in 1959. Then Gao & Gao in 2013 applied the uncertainty theory to a graph (also called uncertain graph). Liu, taking into account that randomness and uncertainty often appear together, coined the concept of combining probability theory with uncertainty theory in 2013. This combined theory called chance theory was also successfully implemented on graph and is known as the uncertain random graph concept. Among the many applications of uncertain random graph, there is the idea of finding the belief degree or the index of a graph and one of them is the connectivity index. Connectivity index as the belief degree that a graph is connected can be found by calculating the chance measure of each edge. Because the concept of an uncertain random graph can be restricted to its uncertainty components only, the definition of connectivity index can also be modified to become well-defined for an uncertain graph. So far, most research on uncertainty theory simply focused on classical graphs and there has been no research on the connectivity index of hypergraph, although this is really needed as an application of uncertainty theory. Therefore, in this study, it is generalized the concept of the connectivity index of an uncertain graph to an uncertain hypergraph, along with its properties, both the analogous one to the uncertain graph and the new one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1987
S27228
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fery Firmansah
"Misalkan adalah suatu graf berarah yang acyclic dengan ( ) * +. Matriks adjacency dari graf berarah adalah matriks [ ] yang berukuran yang didefinisikan dengan, untuk jika terdapat busur berarah dari ke dan untuk selainnya. Matriks disebut sebagai matriks antiadjacency dari graf berarah dengan adalah matriks yang berukuran dengan semua entrinya adalah . Pada tesis ini diberikan sifat-sifat dari polinomial karakteristik matriks antiadjacency dari graf berarah yang acyclic dan gabungan beberapa graf berarah yang acyclic . Selain hal tersebut juga diberikan spektrum matriks antiadjacency dari beberapa kelas graf berarah yang acyclic yaitu graf bipartit lengkap berarah ⃗⃗ dengan , graf bintang berarah keluar ⃗⃗ dengan , graf bintang berarah masuk ⃗⃗ dengan , graf lintasan lengkap berarah ⃗ ⃗⃗⃗ ⃗ dengan , gabungan graf bipartit lengkap berarah ⃗⃗ ⋃ ⃗⃗ dengan , gabungan graf bintang berarah keluar ⋃ ⃗⃗ dengan dan gabungan graf bintang berarah masuk ⋃ ⃗⃗ dengan .

Let be an directed acyclic graph with ( ) * +. The adjacency matrix of directed graph is a matrix [ ] of order , such that if there is an edge from to then , otherwise . The matrix will be called antiadjacency matrix of directed graph with is a matrix of order with all entries are . In this thesis is given properties of characteristic polynomial antiadjacency matrix of directed acyclic graph and union of some directed acyclic graphs . In addition, here are also given spectrum of antiadjacency matrix from some classes of directed acyclic graphs that are complete bipartite directed graph ⃗⃗ with , out-star directed graph ⃗⃗ with , in-star directed graph ⃗⃗ with , complete path directed graph ⃗ ⃗⃗⃗ ⃗ with , union of complete bipartite directed graphs ⃗⃗ ⋃ ⃗⃗ with , union of out-star directed graphs ⋃ ⃗⃗ with and union of in-star directed graphs ⋃ ⃗⃗ with ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T41607
UI - Tesis Membership  Universitas Indonesia Library
cover
Fitri Alyani
"Suatu graf G dapat dibedakan menjadi graf berarah dan graf tidak berarah. Suatu graf berarah D memuat himpunan berhingga V dari simpul dan kumpulan pasangan terurut dari simpul yang berbeda. Pasangan (u,v) dengan u,v elemen V, disebut arc atau busur berarah dan biasanya dinotasikan uv. Graf tidak berarah G=(V,E) dimana V adalah himpunan simpul dan himpunan busur E adalah himpunan pasangan tak berurut dari dua simpul yang berbeda di V . Simpul u,v elemen V bertetangga jika {u,v} elemen E . Sehingga graf tak berarah juga dapat dipandang sebagai graf berarah dengan setiap busurnya mempunyai dua arah. Matriks antiadjacency dari graf berarah G dengan V(G)={v_1,v_2,v_3, ... , v_n}adalah matriks A dengan indeks V(G) dimana =(a_ij)_nxn , a_ij=1 untuk i tidak sama dengan j jika terdapat busur dari v_i ke v_j, a_ij=0 untuk yang lainnya. Matriks B=J-A disebut sebagai matriks antiadjacency dari suatu graf berarah dimana J adalah matriks dengan semua elemennya adalah 1. Pada tesis ini, dipelajari matriks antiadjacency untuk graf tidak berarah dan spektrum dari beberapa kelas graf tidak berarah, yaitu graf lengkap K_n , graf bipartit lengkap K_m,n, graf bintang S_n, dan graf lingkaran C_n.

A graph G can be differentiated as directed and undirected graphs. A directed graph D consists of a finite set V of vertex and a collection of ordered pairs of distinct vertices. Any such pair (u,v) is called an arc or directed edge and denoted by uv . Undirected graph G=(V,E) where V is the vertex set and the edge set E is a set of unordered distinct pairs from V. Vertices u,v element V are adjacent if {u,v} element E. Thus, an undirected graph can also be viewed as a directed graph withevery edge has a two-way direction. Antiadjacency matrix of a directed graph G with V(G)={v_1,v_2,v_3, ... , v_n} is a matrix A which is indexed by V(G) where =(a_ij)_nxn , a_ij=1 if there is an edge from v_i to v_j, a_ij=0 otherwise . The matrix B=J-A will be called antiadjacency matrix of directed graph G where J is a matrix with all its elements are 1 (Bapat, 2010). In this thesis, we study an antiadjacency matrix for undirected graph and find spectrum of some families of undirected graphs, which are complete graphs K_n, complete bipartite graphs K_m,n, star graphs and cycle graphs C_n."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T41713
UI - Tesis Membership  Universitas Indonesia Library
cover
Sukoto
"Pada tesis ini dibahas radius spektral minimal untuk graf n simpul berdiameter 1, kemudian graf n simpul berdiameter 2 dan graf n simpul berdiameter 3. Pada graf berdiameter 1 dibahas untuk semua nilai n, tetapi untuk graf berdiameter 2 dan 3 yang dibahas hanya untuk banyaknya simpul n < 8. Hasil yang diperoleh adalah graf n simpul dengan diameter 1 memiliki radius spektral minimal n - 1 dan graf n simpul dengan diameter 2 memiliki radius spektral minimal.

In this thesis we told about the minimal spectral radius for graphs n vertices with diameter 1, graphs n vertices with diameter 2 and graphs n vertices with diameter 3. For the graphs n vertices with diameter 1, we explored for all of n values. But for the graphs with diameters 2 and 3 we explored for n < 8. The results are the minimal spectral radius for graphs n vertices with diameter 1 equals n - 1 and the minimal spectral radius for graphs n vertices with diameter 2 equals.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
T40814
UI - Tesis Open  Universitas Indonesia Library
cover
Lilik Widiastuti
"Sebuah graf roda berarah yang siklik berorder dapat direpresentasikan melalui matriks antidjacency yang dinyatakan dengan dan matriks adjacency yang dinyatakan dengan. Matriks antiadjacency dan adjacency adalah matriks persegi yang entrinya hanya 0 dan 1. Pada matriks adjacency dari suatu graf berarah, entri 1 menyatakan terdapat suatu busur berarah yang menghubungkan simpul ke simpul, sedangkan entri 0 menyatakan tidak ada busur berarah yang menghubungkan simpul ke simpul. Sementara pada matriks antiadjacency, menyatakan hal yang sebaliknya. Secara umum, setiap koefisien pada polinomial karakteristik dari matriks antiadjacency suatu graf berarah terkait dengan lintasan Hamilton, sementara setiap koefisien pada polinomial karakteristik dari matriks adjacency dari suatu graf berarah tidak terkait dengan lintasan Hamilton. Pada penelitian ini dibuktikan bahwa setiap koefisien pada polinomial karakteristik dari matriks maupun matriks memiliki sifat yang sesuai dengan keumuman tersebut. Selain itu matriks antiadjaceny dan adjacency dari graf roda berarah yang siklik, masing-masing memiliki nilai-nilai eigen yang bernilai real dan nilai-nilai eigen yang kompleks. Ternyata juga diperoleh bahwa nilai eigen kompleks sama dengan negatif dari nilai eigen kompleks.

A directed cylic wheel graph with order, can be represented by the antiadjacency matrix that denoted by and the adjacency matrix that denoted by. The antiadjacency and the adjacency matrix are square matrices that has entries 0 and 1. In the adjacency matrix of a directed graph, the entry 1 denotes there is an directed edge that connects the vertex to the vertex, while the entry 0 denotes there are no directed edges that connect the vertex to the vertex. While in the antiadjacency matrix, those entries denote the otherwise. In general, every coefficient of characteristic polynomial of antiadjacency matrix of a directed graph has relation with the Hamiltonian path, while every coefficient of characteristic polynomial of adjacency matrix of a directed graph does not. In this research, it is proved that every coefficient of the characteristic polynomial of or has properties that are in accordance with the generality. In addition the antiadjacency and the adjacency matrix of directed cyclic wheel graph, each of them has real and complex eigenvalues. It is also obtained that the complex eigenvalues of equals to the negative of the complex eigenvalues of.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Uchi Damaliah
"Suatu graf berarah adalah pasangan himpunan tak kosong V dan himpunan busur berarah A. Busur berarah a ∈ A dapat direpresentasikan sebagai pasangan terurut dengan dimana dengan adanya arah maka tidak sama dengan . Line digraph dari , adalah graf berarah dengan himpunan simpul sedemikian sehingga terdapat busur jika dan hanya jika kepala dari adalah ekor dari . Graf dumbbell berarah adalah graf berarah yang terdiri dari dua graf lingkaran berarah yang dihubungkan oleh graf lintasan berarah. Suatu graf berarah dikatakan mempunyai pelabelan- apabila tiap simpulnya dapat dilabel dengan dengan dan memenuhi sifat yaitu tiap simpulnya memiliki label yang berbeda dan untuk setiap busur berarah, jika dan hanya jika untuk dengan dan . Pelabelan quasi- memiliki definisi yang hamper sama, perbedaannya jika busur berarah maka untuk dengan dan . Pada skripsi ini diberikan konstruksi pelabelan- pada line digraph dari graf dumbbell berarah. Ditunjukkan juga bahwa graf dumbbell berarah merupakan graf DNA jika , dimana adalah banyak simpul.

A directed graph (digraph) is a pair of non empty vertex set and an arc . An arc can be represented as an ordered pair with where the existence of direct makes is not the same as . Line digraph of , is a digraph that has vertex set and there is an arc if only if the head of is the tail of . Digraph dumbbell is digraph consist of two dicycle which connected by adipath. A directed graph can be - labeled if every vertex assigned a label with and , all vertices have different labels, amd for any arc if and only if for with and . A quasi- labeling almost have the same definition with - labeling, except for the arc, if then for with and . In this skripsi gives the construction of -labeling on the line digraph of didumbbell. It ais also shown that didumbbell is DNA graph if , where n is the number of vertices."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45551
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadia Paramita Retno Adiati
"Suatu graf berarah sederhana , dengan simpul dan busur dapat direpresentasikan dalam bentuk matriks antiadjacency, yaitu matriks , dengan adalah matriks adjacency dari graf berarah sederhana dan adalah matriks yang berukuran , dengan semua entrinya bernilai 1. Pada tesis ini diberikan beberapa sifat nilai eigen matriks antiadjacency dari graf berarah sederhana dan sifat nilai eigen pada beberapa kelas graf berarah sederhana, yaitu graf bipartit lengkap berarah, graf lintasan lengkap berarah, graf lingkaran berarah, graf korona berarah dan graf lengkap berarah.

A simple graph , with vertices and edges can be represented as an antiadjacency matrix , where is an adjacency matrix of a simple directed graph and is an matrix, with all of the entries are 1. In this thesis, a study on some properties of the eigenvalues of the antiadjacency matrix of a simple directed graph as well as for some classes of simple directed graphs is carried out. The classes of simple directed graphs being explored are complete bipartite directed graphs, complete path directed graphs, cycle directed graphs, corona directed graphs and complete directed graphs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44632
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Irfan Arsyad Prayitno
"Matriks anti ketetanggaan merupakan salah satu matriks representasi dari suatu graf berarah, tetapi sifat-sifatnya masih belum banyak diketahui karena masih baru diperkenalkan. Sehingga, pada penelitian ini dibahas sifat-sifat dari matriks anti ketetanggaan suatu graf berarah dan graf garis berarahnya. Sifat-sifat yang dibahas yaitu hasil representasi dari perpangkatan matriks anti ketetanggaan suatu graf berarah yang mungkin mempunyai digon atau gelang berarah, determinan dan polinomial karakteristik dari matriks anti ketetanggaan suatu graf berarah yang mempunyai digon berarah, dan hubungan polinomial karakteristik matriks anti ketetanggaan suatu graf berarah asiklik sederhana dan graf garis berarahnya. Kemudian, pada penelitian ini ditunjukkan bahwa tidak ada hubungan antara suatu graf berarah selain asiklik dan graf garis berarahnya dengan memberikan counterexample-nya.

Antiadjacency matrix is one of the representation matrices of a directed graph, but its properties are still not widely known because it has just been introduced. Thus, in this study, we discuss the properties of the antiadjaceny matrix of a digraph and its line digraph. The properties discussed are the results of the representation of powering the antiadjaceny matrix of a digraph which may have directed digon(s) or loop(s), the determinant and characteristic polynomial of an anti-adjacent matrix of a digraph that has directed digon(s), and the characteristic polynomial relationship of the antiadjaceny matrix of a simple acyclic digraph. and the line digraph. Then, in this study, it was shown that there is no relationship between a directed graph other than acyclic and a directed line graph by providing its counterexample."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>