Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56466 dokumen yang sesuai dengan query
cover
Aprilian Eko P.
Depok: Universitas Indonesia, 2001
S27334
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Purnama L.K.
"Tujuan dari tesis ini adalah untuk berkontribusi dalam pengembangan sistem kecerdasan buatan (artificial intelligence) untuk memodelkan pergerakan saham yang bersifat tidak liner dan penuh ketidakpastian. Pendekatan yang digunakan adalah model Artificial Neural Network (ANN) metode Backpropagation. Sebagai pembanding, digunakan model multivariate ARIMA. Penelitian akan membuktikan bahwa model ANN dapat lebih tepat memprediksi pergerakan harga saham di Indonesia, khususnya saham-saham anggota indeks LQ45, dibandingkakan model multivariate ARIMA. Penelitian ini adalah penelitian observasi model. Penelitian menghasilkan kesimpulan bahwa model ANN signifikan secara statistik lebih akurat daripada model multivariate ARIMA.

The objective of this thesis is to contribute the development of artificial intelligence system in modeling stock price movement which highly non-linier and uncertain in nature. Our approach is using Artificial Neural Network (ANN) with Backpropagation method. In comparing the accuracy of the model, we use multivariate ARIMA method. This research intend to show that ANN model is more accurate in predicting Indonesian stock price movement, especially LQ45 index, compared to multivariate ARIMA model. This research is using observational method in selecting the best model. The result of the research is that ANN is statistically significant and more accurate compared to multivariate ARIMA model."
Depok: Fakultas Eknonomi dan Bisnis Universitas Indonesia, 2010
T28101
UI - Tesis Open  Universitas Indonesia Library
cover
Nafisya Alya Aurelitha
"Indeks Harga Saham LQ45 adalah indeks yang mengukur kinerja harga 45 saham yang memiliki likuiditas tinggi dan kapitalisasi pasar besar yang tercatat di Bursa Efek Indonesia. Prediksi Indeks Harga Saham LQ45 dapat digunakan untuk mengukur kinerja suatu portofolio saham di masa yang akan datang sehingga investor dapat melakukan evaluasi terhadap saham-saham yang dimilikinya. Prediksi Indeks Harga Saham LQ45 merupakan suatu tugas yang sulit karena data indeks harga saham ini cenderung memiliki fluktuasi yang cukup tinggi. Untuk itu, diperlukan suatu teknik yang tepat dalam memprediksi Indeks Harga Saham LQ45. Indeks Harga Saham LQ45 merupakan salah satu jenis data runtun waktu. Beberapa model telah dikembangkan dalam memprediksi data runtun waktu, salah satunya adalah machine learning. Generative Adversarial Network (GAN) merupakan salah satu pendekatan khusus untuk machine learning melalui pemodelan generatif. GAN dapat menghasilkan prediksi yang memiliki keakuratan yang tinggi, karena GAN menggunakan dua jaringan, yaitu generator dan diskriminator. Long Short-Term Memory (LSTM) digunakan sebagai generator untuk mempelajari data dan melakukan prediksi serta Convolutional Neural Network (CNN) digunakan sebagai diskriminator untuk mengklasifikasi data. Oleh karena itu, dalam tugas akhir ini, penulis menerapkan GAN dalam prediksi Indeks Harga Saham LQ45. Penerapan metode ini bertujuan untuk meningkatkan akurasi dalam prediksi sehingga investor dapat mengukur kinerja portofolio sahamnya di masa yang akan datang dengan baik. Data yang digunakan dalam tugas akhir ini adalah harga penutupan atau closing Indeks Harga Saham LQ45 harian dari periode 2 Januari 2019 hingga 30 Desember 2022. Hasil prediksi Indeks Harga Saham LQ45 dapat ditunjukkan dengan nilai MAPE. Untuk data training memiliki nilai MAPE sebesar dan untuk data testing memiliki nilai MAPE sebesar perbandingan 80% data training dan 20% data testing.

The LQ45 Stock Price Index is an index that measures the price performance of 45 stocks that have high liquidity and large market capitalization listed on the Indonesia Stock Exchange. The LQ45 Stock Price Index prediction can be used to measure the performance of a stock portfolio in the future so that investors can evaluate the shares they own. Predicting the LQ45 Stock Price Index is a difficult task because this stock price index data tends to have quite high fluctuations. For this reason, an appropriate technique is needed to predict the LQ45 Stock Price Index. The LQ45 Stock Price Index is a type of time series data. Several models have been developed to predict time series data, one of which is machine learning. Generative Adversarial Network (GAN) is a special approach to machine learning through generative modeling. The GAN method can produce predictions that have high accuracy, because GAN uses two networks, namely generator and discriminator. Long Short-Term Memory (LSTM) is used as generator to study data and make predictions and Convolutional Neural Network (CNN) is used as discriminator to classify data. Therefore, in this thesis, the author applies the GAN method in predicting the LQ45 Stock Price Index. The application of this method aims to increase accuracy in predictions so that investors can measure the performance of their stock portfolio in the future properly. The data used in this thesis is the daily closing price of the LQ45 Stock Price Index from the period 2 January 2019 to 30 December 2022. The prediction results of the LQ45 Stock Price Index can be shown by the MAPE value. For training data, the MAPE value is 20,9340% and for testing data, the MAPE value is 2,3740%. These results use a comparison of 80% training data and 20% testing data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ludya Kesturi
"Saham sektor properti dan real estate merupakan jalan bagi investor untuk berinvestasi di pasar properti dan real estate. Harga saham properti dan real esatate memiliki kecenderungan untuk mengalami pergerakkan yang fluktuatif. Untuk meningkatkan potensi perolehan capital gain serta untuk mengukur risiko investasi, harga saham dapat diprediksi menggunakan metode artificial neural network apabila faktor-faktor yang dapat mempengaruhinya diketahui. Variabel yang mempengaruhi harga saham properti dan real estate di Indonesia antara lain, Gross Domestic Product, inflasi, nilai Rupiah terhadap Dollar Amerika, uang beredar, harga minyak mentah, suku bunga jangka panjang, serta volume perdagangan saham.
Hasil prediksi dan performa harga saham properti dan real estate Indonesia menggunakan artificial neural network kemudian dibandingkan dengan metode time series konvensional ARIMA dan regresi linier yang menunjukkan hasil berupa metode artificial neural network lebih unggul dibanding ARIMA dan regresi linier.

Property and real estate stocks facilitates investors to invest their fund in property and real estate market. Property and real estate stock price has a tendency to move fluctuatively. The price can be predicted using artificial neural network, if the variables which affect the price of property and real estate stock could be identified. The variables which affecting the Indonesian poperty and real estate stock price are Gross Domestc Product, inflation, exchange rate of Rupiah to US Dollar, money aggregates, crude oil price, long-term interest rate, and stock trading volume.
Predicticon results and the methods' performance then compared with the more conventional methods which are time series analysis ARIMA and linear regression. The result shows that performance of artificial neural network is better than ARIMA and linear regression.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T47045
UI - Tesis Membership  Universitas Indonesia Library
cover
Teguh Ahmad Adilina
"Kemajuan teknologi telah memudahkan manusia untuk melakukan aktifitas kehidupan sehari-hari dengan lebih baik. Khususnya untuk bidang ilmu pengetahuan dan teknologi, kemajuan teknologi ini telah membantu teriaksananya penelitian-penelitian yang lebih kompleks sehingga dapat terselesaikan dalam jangka waktu yang relatif lebih cepat dengan biaya operasional yang relatif lebih rendah. Salah satu bentuk artificial intelligence yang memanfaatkan ilmu komputasi untuk mendapatkan hasil yang diinginkan tanpa memerlukan perhitungan matematis yang rumit adalah Artificial Neural Network (ANN). ANN merupakan suatu sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi. Keistimewaan ANN terletak pada proses pembelajarannya untuk mencapai hasil yang diinginkan sehingga ANN memiliki ketepatan hasil yang berbeda-beda untuk tiap input-nya, bergantung pada proses pembelajaran yang dialami. Selama ini, ANN telah banyak digunakan untuk sistem pengontrolan, pengenalan pola dan peramalan (prediksi). Pada penelitian ini ANN digunakan untuk menentukan bilangan oktana biogasoline dengan menggunakan software Matlab. Selain itujuga dilakukan percobaan untuk mengetahui pengaruh jumlah neuron dan jumlah lapisan tersembunyi pada jaringan ANN yang digunakan. Hasil yang diperoleh berupa pemodelan Artificial Neural Network (ANN) yang paling optimal berupa jaringan yang memiliki 1 lapisan tersembunyi dengan 4 buah neuron. Perbandingan hasil antara data masukan (target) dan keluaran jaringan ANN menunjukkan teriadnya kesalahan relatif sebesar 2,226 %. Hasil prediksi jaringan ANN untuk rasio jumlah minyak sawit/jumlah katalis sebesar 20 dansuhu reaksi sebesar 600°C adalah bilangan oktana sebesar 105,158. Dengan demikian, dapat disimpulkan bahwa jaringan ANN ini dapat digunakan untuk menentukan bilangan oktana biogasoline dengan tingkat ketepatan (akurasi) yang bergantung pada pola data masukan yang digunakan."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49560
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didi Harlianto
"Beberapa perusahaan asuransi memiliki produk asuransi kesehatan yang menjamin pembayaran klaim atas penyakit tuberkulosis. Salah satu komponen penentu tarif premi adalah tingkat morbiditas sehingga peramalan tingkat morbiditas merupakan hal yang penting bagi perusahaan asuransi. Penelitian ini membahas peramalan tingkat morbiditas tuberkulosis di Indonesia dengan menggunakan model jaringan Recurrent Neural Network (RNN), yang merupakan bagian dari Deep Learning, dan grey model. Performa dari kedua model tersebut dibandingkan melalui nilai mean squared error (MSE) dan mean absolute percentage error (MAPE) yang dihasilkan. Hasilnya menunjukkan bahwa grey model memiliki akurasi yang lebih baik dibandingkan RNN.

Several insurance companies sell health insurance products that cover tuberculosis risk. One principal component to determine the insurance premium that must be paid by the insured is the morbidity rate. Therefore, morbidity rate forecasting is essential for an insurance company. In this research, we present the Indonesia tuberculosis morbidity rate forecasting using Recurrent Neural Network (RNN), which is part of deep learning, and grey model. The performance of two models is compared in term mean squared error (MSE) and mean absolute percentage error (MAPE). The results show that the grey model outperform the RNN."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"The paper discussed about the neural network models at nonlinear autoregressive process which is applied in the composite stock price index data at Surabaya stock exchange. ...."
Artikel Jurnal  Universitas Indonesia Library
cover
Victor Emanuel Mathaus
"Neural Network adalah suatu sistem informasi yang mempunyai kemampuan untuk belajar, mengingat dan menyelesaikan permasalahan berdasarkan proses belajar yang diberikan kepadanya. Sistem informasi ini mempunyai struktur yang menyerupai susunan syaraf manusia. Kemampuan dari Neural Network inilah yang menjadi hahaa kajian dalam penulisan ini. Tulisan ini membahas mengenai struktur dari Neural Network dan semua unsur penyusunnya dalam hal pendekatan terhadap kemampuannya untuk memprediksi harga dari konduktivitas termal pada hahan polyurethane. Selama ini penelitian konduktivitas termal terhadap suatu spesimen menggunakon suatu alat yang bcrnorna "Thermal Conductivity Measuring Apparatus". Oleh korena itu , dalam penulisan tugas akhir ini penulis mencoba membuat suatu struktur dari Neural Network dan membandingkon kemampuan dari Neural Network tersebut untuk memprediksi horga dari konduktivitas termal dengan basil yang didapat dari eksperimen . Pada akhir llllalisa, disimpulkan bahwa Neural Network mampu melakukan peedekotan dalam memprediksi horga konduktivitas termal, dalam hal in.i Polyurethane !ham. Pemilihaa data tmining, pemilihan strnktar dari Neuml Network sangat mempengaruhi keakuratan terhadap basil yang didapat.

Neural Network is an infurmarion system which has ability to learn, to remember, and to solve the problems based on process learn given. This system infonnarion has the slrueture looking like furmation of bnrnan being nerve. The Ability of this Neural Networl< becomes the study materials in this writing. This article study to regard the structure from Neural Network and its entire compiler element in the case of approach to its ability for the prediction of prioe from thermal conductivity of polyurethane materials .At this momen~ the research of thermal conductivity of specimens using a tool called "Thennal Conductivity Measuring Apparatus". Therefore, in this article, the writer try to IOOke a structure from Neural Network and compare the ability from the Neural Network for the prediction of prioe from thermal conductivity with the result from experiment. By the end of analysis, it is conclude that Neural Network can conduct the approach in predierion of price of thennal conduerivity. The Eleerions of data trainin~ structure election ftom Neural Nerwolk is vezy influencing of accmacy to the result."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S37799
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Alfarisi
"Demam Berdarah Dengue (DBD) masih menjadi masalah kesehatan yang utama di Indonesia.  Berdasarkan data dari Kemenkes RI, pada tahun 2022 jumlah insiden DBD dicatat sebanyak 131.265 yang mana sekitar 40% adalah anak-anak usia 0 sampai 14 tahun dengan jumlah kasus kematian mencapai 1.135 jiwa dengan 73% terjadi pada anak-anak usia 0 sampai 14 tahun. DBD disebabkan oleh virus dengue yang disebarkan melalui gigitan nyamuk Aedes aegypti  dan Aedes albopictus.. Selain faktor kebersihan lingkungan dan kebiasaan masyarakat, tingginya insiden DBD di Indonesia juga dipengaruhi oleh beberapa faktor iklim seperti curah hujan, temperatur, dan kelembapan. Memaksimalkan proses pencegahan DBD oleh pemerintah dan masyarakat dapat menekan tingginya kasus DBD di Indonesia. Salah satu cara untuk memaksimalkan proses pencegahan DBD adalah dengan melakukan prediksi jumlah insiden DBD yang akan terjadi kedepannya. Dengan mengetahui hasil prediksi jumlah insiden DBD, diharapkan masyarakat dan pemerintah dapat memaksimalkan proses pencegahan DBD. Pada tugas akhir ini, dilakukan prediksi jumlah insiden DBD menggunakan convolutional neural network dan extreme gradient boosting, dengan jumlah insiden sebelumnya dan faktor cuaca sebelumnya yang terdiri dari temperatur, curah hujan, dan kelembapan relatif sebagai variabel prediktor. Variabel prediktor yang digunakan ditentukan berdasarkan time lag dari masing-masing variabel prediktor terhadap jumlah insiden DBD menggunakan korelasi silang. Model convolutinal neural network dan extreme gradient boosting yang dibentuk dievaluasi dan dibandingkan berdasarkan nilai Root Mean Square Error (RMSE), Mean Absolute Error (MAE), dan waktu simulasi. Pada tugas akhir ini, convolutional neural network memberikan performa yang lebih baik dibandingkan dengan extreme gradient boosting berdasarkan nilai RMSE dan MAE dengan rata-rata 13,3586 untuk RMSE dan 9,2249 untuk MAE. Berdasarkan waktu simulasi, extreme gradient boosting memberikan performa yang lebih cepat dibandingkan convolutional neural network.

Dengue Hemorrhagic Fever (DHF) remains a major health problem in Indonesia. Based on data from the Ministry of Health of Indonesia, in 2022, the number of DHF incidents recorded was 131,265, of which approximately 40% were children aged 0 to 14 years, with a total of 1,135 deaths, 73% of which occurred in children aged 0 to 14 years. DHF is caused by the dengue virus, which is transmitted through the bites of Aedes aegypti and Aedes albopictus mosquitoes. In addition to environmental cleanliness and societal habits, the high incidence of DHF in Indonesia is also influenced by several climate factors such as rainfall, temperature, and humidity. Maximizing the DHF prevention process by the government and the community can help reduce the number of DHF cases in Indonesia. One way to maximize the DHF prevention process is by predicting the future number of DHF incidents. By knowing the predicted number of DHF incidents, it is hoped that the community and the government can maximize the DHF prevention process. In this final project, the prediction of the number of DHF incidents is carried out using convolutional neural network and extreme gradient boosting, with the previous incident counts and previous weather factors consisting of temperature, rainfall, and relative humidity as predictor variables. The predictor variables used are determined based on the time lag of each predictor variable on the number of DHF incidents using cross-correlation. In this final project, the convolutional neural network outperforms extreme gradient boosting based on the RMSE and MAE values, with an average of 13.3586 for RMSE and 9.2249 for MAE. However, in terms of simulation time, extreme gradient boosting demonstrates faster performance compared to the convolutional neural network."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shabrina Tiffany
"Keberadaan COVID-19 di Indonesia saat ini bukanlah satu-satunya wabah penyakit yang harus diwaspadai. Menteri Kesehatan mengatakan ada penyakit yang tidak kalah  berbahaya dan juga tidak kalah mematikan dibandingkan dengan wabah penyakit COVID-19, yaitu Demam Berdarah Dengue. Penyakit ini sudah sepatutnya untuk diwaspadai mengingat jumlah kasusnya yang semakin meningkat dan melebihi jumlah kasus penyakit COVID-19. Faktor cuaca seperti curah hujan, temperatur, dan kelembapan merupakan faktor yang sangat berpengaruh dalam penyebaran parasit dan vektor penular DBD. Untuk mengoptimalkan upaya pencegahan dan penanganan DBD, perlu dilakukannya prediksi terkait jumlah insiden DBD.
Dalam tugas akhir ini dilakukan proses prediksi jumlah insiden DBD di DKI Jakarta dengan memperhitungkan faktor iklim (curah hujan, kelembapan, dan temperatur) menggunakan metode Extreme Learning Machine dan metode Artificial Neural Network-Back Propagation serta membandingkan kinerja dari kedua metode tersebut.  Berbeda dari Artificial Neural Network-Back Propagation, Extreme Learning Machine tidak membutuhkan proses iterasi untuk update parameter.
Dengan menggunakan data variabel cuaca dan data jumlah insiden DBD kumulatif, Extreme Learning Machine dapat memberikan hasil prediksi yang lebih akurat dibandingkan dengan  Artificial Neural Network - Back Propagation. Extreme Learning Machine dengan persentase data training sebesar 90% menunjukkan hasil prediksi yang lebih baik dibandingkan dengan persentase data training lainnya yang digunakan dalam tugas akhir ini yaitu sebesar 80% dan 70%.

The existence of COVID-19 currently in Indonesia is not the only disease which must be watched out. The Health Ministry has said that there was a disease that is as dangerous as COVID-19. That disease is Dengue Fever. Dengue Fever also must be given an extra caution because it is noted that until now the number of dengue cases continues to increase and exceeds COVID-19 cases. The weather factors, such as rainfall, temperature, and humidity, are a very influential factor in the spread of parasites and infectious vectors of dengue fever.  To optimize the dengue handling and prevention effort, it is important to make the dengue cases prediction.
In this final paper, the number of dengue incidences will be predicted by involving weather factors (rainfall, temperature, and humidity) using Extreme Learning Machine and Artificial Neural Network-Back Propagation and also comparing the both of their performance. Unlike the Artificial Neural Network-Back Propagation, Extreme Learning Machine does not need the iteration process to update the parameter.
The result shows that Extreme Learning Machine can give the dengue incidences prediction  which is more accurate than the dengue incidences prediction that is given by using Artificial Neural Network-Back Propagation. Extreme Learning Machine by using 90% training data can show the better prediction result than other training data percentage which is used in this final paper, 80% and 70%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>