Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64382 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2003
S27378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Nur Noviyani Witayati
"ABSTRAK
Tugas akhir ini membahas mengenai metode Bayes dalam penaksiran parameter skala dari distribusi Nakagami menggunakan dua fungsi loss, yaitu Square Error Loss Function dan Precautionary Loss Function. Pada tugas akhir ini juga akan dicari Resiko Posterior dari masing-masing taksiran. Sebagai pembanding untuk taksiran dengan menggunakan metode Bayes, akan dicari juga taksiran parameter skala dari distribusi Nakagami menggunakan metode Maksimum Likelihood. Sebagai ilustrasi, akan dilakukan simulasi dengan data yang berdistribusi Nakagami ( ). Setelah taksiran telah didapatkan, akan dihitung Mean Square Error dari masing-masing taksiran. Hal tersebut dilakukan untuk mengetahui seberapa baik taksiran yang dihasilkan oleh metode Bayes.

ABSTRACT
This paper discusses about Bayesian Method in estimating the scale parameter of Nakagami Distribution using two loss function, that is Square Error Loss Function and Precautionary Loss Function. This paper will also find the posterior risk from each of the estimator. As the comparison of the Bayesian estimate, the estimator using Maximum Likelihood method will also be considered. For the illustration, simulation with Nakagami distributed data ( ) will be performed. Once the estimate have been obtained, Mean Square Error on each estimate will be calculated. This is done to measure the performance of the estimate produced by Bayesian method.
"
2016
S62664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuridunis Saidah
Depok: Universitas Indonesia, 2010
S27783
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
cover
Moh. Irfan Safutra Haris
"[ABSTRAK
Menampilkan data seismic dalam bentuk probabilitas merupakan cara yang umum dilakukan untuk mengikutsertakan informasi ketidak-pastian dari pekerjaan pemetaan prospek hidrokarbon. Hal tersebut memberikan interpreter peluang untuk mengukur seberapa yakin mereka terhadap prospek yang sudah dibuat dengan memanfaatkan informasi nilai ?most-probable?. Pada sisi lain, ketersediaan pre-stack data sudah sangat umum dijumpai sehingga hal ini merubah cara pandang terhadap inversi seismic yang semula hanya dilakukan terhadap data post-stack menjadi inversi pre-stack. Hal tersebut memang beralasan karena dengan inversi pre-stack, interpreter tidak hanya dimungkinkan mendapatkan informasi litologi namun juga informasi tentang fluida.
Aturan Bayes adalah merupakan bentuk lain dari probabilitas terkondisi, aturan ini telah banyak dimanfaatkan oleh berbagai disiplin ilmu seperti penginderaan jauh, peramalan cuaca, pemasaran dan ilmu medis untuk membantu dalam meminimalkan resiko saat pengambilan keputusan. Hal yang sama juga bias kita terapkan pada bidang ilmu bumi dimana keluaran dari proses inversi pre-stack dapat ditransformasi menjadi bentuk volum probabilitas dengan supervisi data sumuran.
Penelitian ini menggunakan P-impedance dan VP/VS sebagai input karena kombinasi keduanya merupakan indikator yang baik untuk memisahkan litologi maupun hidrokarbon. Dengan menggunakan supervisi dari data sumuran kedua volume tersebut kemudian di transformasi menjadi bentuk kelas most-probable: (1) shale, (2) wet sand, (3) compacted sand, dan (4) hydrocarbon sand.

ABSTRACT
Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes? Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes? Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand.;Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes? Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes? Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand.;Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes? Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes? Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand.;Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes? Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes? Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand., Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes’ Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes’ Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand.]"
2013
T43117
UI - Tesis Membership  Universitas Indonesia Library
cover
Moh. Irfan Safutra Haris
"ABSTRAK
Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes’ Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes’ Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using Menampilkan data seismic dalam bentuk probabilitas merupakan cara yang umum dilakukan untuk mengikutsertakan informasi ketidak-pastian dari pekerjaan pemetaan prospek hidrokarbon. Hal tersebut memberikan interpreter peluang untuk mengukur seberapa yakin mereka terhadap prospek yang sudah dibuat dengan memanfaatkan informasi nilai “most-probable”. Pada sisi lain, ketersediaan pre-stack data sudah sangat umum dijumpai sehingga hal ini merubah cara pandang terhadap inversi seismic yang semula hanya dilakukan terhadap data post-stack menjadi inversi pre-stack. Hal tersebut memang beralasan karena dengan inversi pre-stack, interpreter tidak hanya dimungkinkan mendapatkan informasi litologi namun juga informasi tentang fluida.
Aturan Bayes adalah merupakan bentuk lain dari probabilitas terkondisi, aturan ini telah banyak dimanfaatkan oleh berbagai disiplin ilmu seperti penginderaan jauh, peramalan cuaca, pemasaran dan ilmu medis untuk membantu dalam meminimalkan resiko saat pengambilan keputusan. Hal yang sama juga bias kita terapkan pada bidang ilmu bumi dimana keluaran dari proses inversi pre-stack dapat ditransformasi menjadi bentuk volum probabilitas dengan supervisi data sumuran.
Penelitian ini menggunakan P-impedance dan VP/VS sebagai input karena kombinasi keduanya merupakan indikator yang baik untuk memisahkan litologi maupun hidrokarbon. Dengan menggunakan supervisi dari data sumuran kedua volume tersebut kemudian di transformasi menjadi bentuk kelas most-probable: (1) shale, (2) wet sand, (3) compacted sand, dan (4) hydrocarbon sand.

ABSTRACT
Presenting seismic data in probability form is common practice in order to assess the uncertainty in hydrocarbon prospecting. It gives interpreters the ability to measure how sure they are about prospect they dealing with by looking at most probable value. In another side pre-stack data is now commonly available; it changes the paradigm about seismic inversion from just post-stack inversion turn into pre-stack inversion. The reason is obvious, by inverting pre-stack data will allow interpreter to obtain not only lithology information but fluid as well.
The Bayes’ Rule is extension of conditional probability, it has been utilizes in many disciplines such us remote sensing, broadcasting, marketing and medical science to support in decision making. Bayes’ Rule is used to revise a probability value based on additional information that is later obtained. The same concept can also be applied to help decision making in hydrocarbon prospect evaluation where the output of pre-stack inversion can be transformed to probability volume supervised by well log data.
This study uses P-Impedance and VP/VS as inputs because their combination is good indicator of lithology and hydrocarbon. Using training set from well log the volumes then transformed into four most probable classes: (1) shale, (2) wet sand, (3) compacted sand, and (4) hydrocarbon sand."
2013
T43455
UI - Tesis Membership  Universitas Indonesia Library
cover
Sisca Agnessia
"Dalam Penelitian ini akan dicari taksiran mean stratum pada sampling acak stratifikasi. Pada sampling acak stratifikasi, seringkali hanya tersedia beberapa pengamatan pada masing-masing strata. Kecilnya ukuran sampel akan menyebabkan penaksir langsung dari mean stratum menjadi kurang tepat. Metode alternatif yang dapat digunakan untuk menaksir mean dari stratum adalah dengan menggunakan metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran mean stratum pada sampling acak stratifikasi dengan cara menggabungkan informasi awal atau informasi yang telah tersedia sebelumnya tentang parameter yang akan ditaksir dengan informasi dari data sampel. Informasi awal disebut juga informasi prior. Penggabungan dari informasi prior dan informasi dari data akan menghasilkan informasi posterior. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior diestimasi dari data.

In this research will find the estimated stratum mean in stratified random sampling. In the stratified random sampling, often only available a few observations in each strata. The small sample size would cause a direct estimator of the mean stratum becomes less precise. Alternative methods that can be used to estimate the mean of the stratum is to use the Empirical Bayes method. Empirical Bayes methods used to find the estimated mean stratum in stratified random sampling by combining the initial information or information that has been available previously on the parameters to be estimated with information from the data sample. Preliminary information also known as prior information. The incorporation of prior information and information from the data will result in posterior information. In the Empirical Bayes method, prior information is not available so the information estimated from prior data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45105
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shelly Apsari
"Banyak faktor pada packaging suatu produk yang dapat mempengaruhi keputusan pembelian konsumen. Pada penelitian ini akan difokuskan pada bentuk botol, ukuran font merk, dan warna pada botol shampoo. Kombinasi ketiga faktor tersebut yang dinilai paling menarik perhatian akan diuji dengan menggunakan metode Conjoint Analysis dan eye-tracking. Dari penelitian didapatkan bahwa bentuk botol berwarna dan ramping dengan ukuran font merk yang besar paling menarik perhatian konsumen.

There are many factors in a product packaging that can affect the consumer buying decision. This research will be focused on the bottle shape, brand font size and the color on shampoo bottle. The combination of these three factors will be rated from the most attracted one. It will be tested by using the Conjoint Analysis and Eye-tracking methods. From this research, a colored and slim bottle shape with the big font size of the brand gives the most attraction for the consumer."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43175
UI - Skripsi Open  Universitas Indonesia Library
cover
Nur Atikah Tadjuddin
"Studi materi pada sistem yang berkorelasi kuat adalah topik penting karena interaksi material yang kuat antar-partikel dapat menghasilkan berbagai sifat fisik dan fenomena khusus. Beberapa metode komputasi telah dikembangkan untuk menemukan sifat sistem secara akurat menggunakan model Hubbard, tetapi banyak di antaranya membutuhkan biaya komputasi yang besar untuk mendapatkan hasil yang baik. Di Dalam penelitian ini kami mengusulkan pendekatan baru dalam kerangka kerja Dynamical Mean framework Theory (DMFT) yang melibatkan algoritma yang lebih sederhana dan diharapkan menghabiskan biaya komputasi lebih sedikit dibandingkan dengan metode sebelumnya. Algoritma ini diimplementasikan dengan membangun elemen matriks energi mandiri lokal yang bergantung pada fluktuasi hunian. Kemudian diintegrasikan ke semua konfigurasi hunian yang dimungkinkan untuk mendapatkan interaksi fungsi hijau. Matriks fungsi Hijau yang diperoleh kemudian digunakan untuk menghitung kepadatan negara (DOS) dan jumlah fisik lainnya. Kasus ini meninjau kondisi pengisian kuartal. Hasil komputasi yang dilakukan menunjukkan hasil kesenjangan ketika tolakan Coulomb cukup tinggi dan menunjukkan tren pseudogap akan semakin menghilang seiring dengan meningkatnya suhu. Sistem mempertahankan karakter paramagnetik untuk semua kondisi yang dipelajari.

Material studies on strongly correlated systems are important topics because of interactions strong inter-particle constituent material can produce various physical properties and phenomena special. Several computational methods have been developed to find the nature of the system accurately using the Hubbard model, but many of them are requires large computing costs to get good results. In this research we propose a new approach within the Dynamical Mean framework Field Theory (DMFT) which involves a simpler and expected algorithm spend less computing costs compared to the method previous. This algorithm is implemented by constructing matrix elements local self-energy that depends on occupancy fluctuations. Then integrated to all occupancy configurations that are possible to get the Green function interaction. The Green function matrix obtained is then used to calculate state density (DOS) and other physical quantities. This case reviews the conditions for quarter filling. The computational results carried out show the result of a gap when the Coulomb repulsion is high enough and shows pseudogap trends will increasingly disappear along with increasing temperature. System retain paramagnetic character for all conditions studied. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>