Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154462 dokumen yang sesuai dengan query
cover
Lidya Christie Caroline
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27796
UI - Skripsi Open  Universitas Indonesia Library
cover
"Pengeluaran per kapita merupakan salah satu alat untuk mengukur kesejahteraan masyarakat. Survei yang dilakukan oleh Badan Pusat Statistik (BPS) menghitung pengeluaran per kapita dengan menjumlahkan data total pengeluaran (makanan dan non makanan) perbulan (dalam rupiah) dibagi dengan jumlah anggota rumah tangga. Menurut Susenas tahun 2005 pengeluaran per kapita sebulan penduduk Indonesia mencapai 266.751 rupiah. Data yang dihasilkan dari survei semacam ini dirancang untuk inferensial bagi daerah yang luas. Untuk memperoleh informasi area yang lebih kecil, seperti pada level kecamatan atau desa, maka salah satu metode yang tepat adalah Small Area Estimation (SAE). Dalam tugas akhir ini akan dicari taksiran pengeluaran per kapita di tiap kecamatan di kabupaten Lumajang dengan metode Empirical Best Linear Unbiased Prediction (EBLUP). Setelah didapatkan taksirannya, dibandingkan MSE taksiran EBLUP tersebut dengan MSE dari penaksiran langsung untuk mengetahui metode penaksiran mana yang lebih baik. Penelitian menggunakan data survei BPS 2008. Populasi penelitian tugas akhir ini adalah seluruh rumah tangga di tiap kecamatan di kabupaten Lumajang. Sampel diambil dari data BPS 2008 dengan teknik simple random sampling. Mean Square Error (MSE) yang diperoleh dengan penaksiran tak langsung (EBLUP) mempunyai nilai yang lebih kecil dibandingkan MSE dari penaksiran langsung."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marantika, Alfin
"ABSTRAK
Analisis Variansi adalah suatu teknik dalam statistika untuk menguji perbedaan mean lebih dari dua kelompok dengan adanya faktor yang dapat mempengaruhi perbedaan mean tersebut. Analisis variansi terdapat tiga jenis, yaitu analisis variansi satu arah, analisis variansi dua arah, dan analisis variansi multi-arah. Pada tugas akhir ini, akan dibahas mengenai analisis variansi dua arah. Pengujian statistik pada analisis variansi didasarkan oleh uji F. Dalam melakukan analisis variansi dua arah, terdapat asumsi yang harus dipenuhi, yaitu pengamatan dalam sel atau kelompok harus berdistribusi normal, pengamatan antar sel atau kelompok saling independen, dan variansi antar sel atau kelompok bersifat homogen. Masalah yang sering terjadi pada analisis variansi dua arah adalah asumsi yang tidak terpenuhi, salah satunya variansi antar sel atau kelompok bersifat heterogen. Dengan menggunakan uji F saat variansi antar sel heterogen, membuat hasil p-value tidak valid. Tugas akhir ini berisi pembahasan metode untuk mengatasi permasalahan tersebut. Metode yang digunakan, adalah bootstrap parametrik yang diperkenalkan oleh Khrisnamoorthy 2007. Dengan melakukan simulasi, metode ini menghasilkan p-value yang lebih stabil saat melakukan analisis variansi dua arah dengan variansi antar sel heterogen.

ABSTRACT
The analysis of variance is a technique in statistics to test the mean differences of more than two groups in the presence of factor that can effect the mean difference. There are three types of variance analysis, namely one way analysis of variance, two way analysis of variance, and multi way analysis of variance. In this final project, will be discussed about two way variance analysis. Statistical test on analysis of variance based on F test. In peforming analysis of variance, there are assumptions that must be fulfilled such as the observation in each cell or group must be normally distributed, observation between cells or group are mutually independent, and variance between cells or group are homogeneous. The most common problem that happened with two ways analysis of variance is unfulfilled assumptions, one of them is variance between cells or group are heterogeneous. By using the F test when the variance between cells or group are heterogenous makes the results p values is invalid. In this final project contains a method discussion to overcome the problem. The method used namely parametric bootstrap introduced by Khrisnamoorty 2007 . By performing the simulation, this method produces a more stable p value when conducting two ways analysis of variance with variance between cells or gorup are heterogeneous."
2017
S69873
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Gita Naima
"Survey sampling adalah salah satu metode pengambilan sample dari suatu objek untuk memberikan informasi taksiran dari parameter populasi yang menjadi fokus penelitian. Salah satu metode yang digunakan untuk menaksir parameter populasi adalah penaksiran langsung. Namun, ketika penaksir langsung tersebut digunakan untuk suatu area yang kecil, maka akan menimbulkan standard error yang besar. Penanganan masalah tersebut dalam penaksiran area kecil dilakukan dengan menambahkan informasi mengenai parameter yang sama pada area kecil lain yang memiliki karakter serupa atau nilai pada waktu yang lalu, atau nilai dari peubah yang memiliki hubungan dengan peubah yang sedang diamati, metode ini dikenal dengan penaksiran area kecil Small Area Estimation, SAE. Dalam tugas akhir ini metode small area yang digunakan memperhatikan adanya pengaruh spasial antar area Spatial Empirical Best Linear Unbiased Prediction,SEBLUP . Untuk mendapat penaksir SEBLUP perlu dilakukan terlebih dahulu penaksiran variansi pengaruh acak dan korelasi antar area. Dalam tugas akhir ini untuk menaksir variansi pengaruh acak area dan korelasi digunakan metode Maximum Likelihood dan algoritma scoring.

Survey sampling is one of the sampling methods of an object to provide information estimation of population parameters that became the focus of research. One of the methods that used to estimate population parameters is direct estimation method. However, when the direct estimation is used it will caused a large standard error. To handle that problem in small area we add information about the same parameters in other small areas which has similar character, or the value of the variables that are related to the variables being observed, this method is known as the small area estimation SAE. In this mini thesis, small area methode that we use consider spatial correlation between area Spatial Empirical Best Linear Unbiased Prediction. The estimator of spatial EBLUP depends on the variance component and spatial correlation, but in practice they are unknown. Therefore, to get the spatial EBLUP estimator it is necessary to first estimate the variance of random effect and correlations between area. In this mini thesis we use maximum likelihood method and scoring algorithm to estimate the variance of random effect and correlations between area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69714
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Chandra Dwi Saputra
"ABSTRAK
Prediksi dari besar klaim yang belum terselesaikan (outstanding claims) memegang peranan penting, mengingat perusahaan asuransi selalu dituntut untuk dapat menyediakan cadangan yang cukup guna menutupi pembayaran klaim di masa yang akan datang. Salah satu metode prediksi yang sering digunakan adalah metode Bornhuetter-Ferguson. Metode Bornhuetter-Ferguson termasuk ke dalam metode yang bersifat tradisional. Saat ini, metode prediksi yang bersifat tradisional telah banyak dikembangkan. Dalam hal ini, perhitungan cadangan klaim tidak dilakukan untuk menunjukkan kegagalan perhitungan cadangan klaim secara tradisional, melainkan lebih memberikan penekanan pada ketersediaan ukuran kesalahan prediksi dan distribusi prediksi dari cadangan klaim. Oleh karena itu, prediksi cadangan klaim dilakukan dengan menerapkan bootstrap pada metode Bornhuetter-Ferguson agar diperoleh informasi dari kesalahan prediksi dan distribusi prediksi dari cadangan klaim.

ABSTRACT
Prediction of outstanding claims has an important roles considering insurance companies are required to allocate sufficient reserves for future payment of claims. One of the prediction methods that can be used is Bornhuetter Ferguson method. Bornhuetter Ferguson method is a traditional method to predict the outstanding claims. Nowadays, the traditional method has many been developed. In this case, the calculation of claim reserves are not done to show the failure of calculation in traditional way, but more to give an emphasis on the error availability and predictive distribution from the claim reserves. Therefore, claim reserves prediction is performed by applying bootstrap on the Bornhuetter Ferguson method to obtain the information about error and predictive distribution from the claim reserves."
2017
S69851
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Beberapa tahun belakangan ini, value at risk (VaR) semakin sering digunakan dalam mengukur risiko finansial. Cara yang populer digunakan adalah metode Delta Normal dan metode simulasi Monte-Carlo. Pada tugas akhir ini akan dibahas metode simulasi historis. Metode ini menggunakan data-data terdahulu untuk memperoleh nilai VaR. Terkadang sulit mendapatkan data dalam jumlah yang besar, keadaan ini menimbulkan keraguan mengenai ketepatan hasil taksiran yang diperoleh. Cara yang banyak digunakan dalam mengolah data berukuran kecil agar menjadi lebih layak adalah dengan bootstrap. Sehingga di beberapa literatur, metode simulasi historis disebut juga dengan metode bootstrap. Metode bootstrap ini akan diterapkan pada suatu data penghasilan, sehingga diperoleh taksiran VaR dari data tersebut. Bootstrap layak digunakan karena memberikan suatu nilai taksiran tak bias, dengan variansi yang mengecil. "
Universitas Indonesia, 2007
S27669
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syahril Ramadhan
"Survei umumnya ditujukan untuk melakukan pendugaan parameter populasi seperti total maupun rata-rata nilai suatu domain area dengan jumlah sampel yang besar. Salah satu pendekatan dalam menduga parameter populasi dihasilkan melalui metode pendugaan langsung. Namun, pendugaan langsung seringkali kurang presisi saat ukuran sampel suatu area berukuran kecil. Selain itu, terdapat permasalahan ketika pendugaan langsung tersebut digunakan untuk suatu area dengan ukuran sampel yang kecil, yaitu akan menimbulkan standard error yang besar. Permasalahan ini kemudian diatasi dengan mengembangkan metode pendugaan parameter yang dikenal dengan metode pendugaan area kecil Small Area Estimation, SAE. Dalam skripsi ini, akan dijelaskan prosedur untuk mencari dugaan rata-rata nilai populasi pada area kecil dengan metode Spatial Empirical Best Linear Unbiased Prediction SEBLUP yang mengikuti model Simultaneously Autoregressive SAR . Secara umum, prosedur ini diawali dengan mendefinisikan model tingkat area. Kemudian, model tingkat area tersebut diperluas dengan menambahkan pengaruh spasial ke dalam pengaruh acak area. Model spasial tingkat area tersebut yang selanjutnya digunakan sebagai dasar untuk melakukan pendugaan rata-rata nilai populasi pada area kecil.

Surveys are generally intended to predict population parameters such as the total or mean value of a domain area with a large sample size. One approach in estimating population parameters is obtained through direct estimation methods. However, direct estimation are often less precise when the sample size of an area is small. In addition, there is a problem when the direct estimation is used for an area with a small sample size, which will cause a large standard error. This problem was then addressed by developing a method of parameter estimation known as the Small Area Estimation SAE method. In this mini thesis, we will describe the procedure to find the mean population value in a small area using Spatial Empirical Best Linear Unbiased Prediction SEBLUP method which follows Simultaneously Autoregressive SAR model. In general, this procedure begins with defining an area level model. Then, the area level model is expanded by adding spatial effects into the random effects of the area. The spatial model of the area level is then used as the basis for estimating the mean population value in a small area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69201
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Fitriyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27851
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuridunis Saidah
Depok: Universitas Indonesia, 2010
S27783
UI - Skripsi Open  Universitas Indonesia Library
cover
Murni
"General Linear Mixed Model merupakan model di mana variabel response dipengaruhi oleh faktor fixed dan faktor random. Parameter dari faktor fixed dan random (efek fixed dan random) pada model tersebut tidak diketahui nilainya sehingga harus dilakukan penaksiran. Adapun metode yang digunakan untuk menaksir efek fixed dan random, diantaranya adalah BLUP dan EBLUP. Setelah didapatkan taksiran parameter, selanjutnya akan dilihat seberapa baik taksiran parameter yang diperoleh, yaitu dengan cara mencari Mean Squared Error (MSE) pada General Linear mixed Model. Karena metode penaksiran yang digunakan adalah BLUP dan EBLUP maka pada Tugas Akhir ini akan dibahas mengenai MSE BLUP, MSE EBLUP, dan penaksiran pada MSE EBLUP. Penaksiran ini dilakukan karena nilai dari MSE EBLUP bergantung pada parameter dari variansi efek random yang tidak diketahui nilainya. Kemudian, cara yang digunakan untuk menaksir MSE EBLUP adalah dengan mensubstitusikan taksiran parameter dari variansi efek random ke dalam MSE EBLUP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>