Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59636 dokumen yang sesuai dengan query
cover
Budi Siswanto
"Proses penggerusan dan pemanasan dalam pembuatan bahan sampel CaMnO3 telah dilakukan dengan menggunakan ball-mill dan furnace pada suhu 4000C, 6000C, 8000C dan 10000C dengan lama penggerusan 3, 6, 9 dan 12 jam serta lama pemanasan 3, 6 dan 9 jam. Bahan baku utama yang digunakan untuk pembuatan sampel adalah CaCO3 dan MnO2 serta katalis 2-propanol. Semua bahan baku dalam bentuk serbuk dengan tahapan mixing, milling dan pemanasan. Adapun reaksi kimia yang terjadi selama proses penggerusan dan pemanasan adalah sebagai berikut: CaCO3 + MnO2 CaMnO3 + CO2.
Dari hasil identifikasi fasa melalui difraksi sinar X diperoleh bahwa, fasa baru CaMnO3 terbentuk pada milling 12 jam dan pemanasan 1000°C selama 9 jam. Karakteristik sifat magnetik ditentukan dengan peralatan Vibrating Sample Magnetometer (VSM) yang terdapat di P3IB-BATAN dan di Departement Of Physics, Faculty of Sciences Tokyo Institute of Teknology Japan. Dari hasil percobaan didapatkan karakteristik sifat magnetik terlihat pada pengukuran suhu ~121 K baik pada sampel pemanasan 800°C maupun 1000°C.
Hasil analisis sifat magnetik sampel pemanansan 1000°C diketahui terdapat peningkatan koersivitas dan remanen sebesar 0,74 tesla dan 3.71 emu/gram dengan suhu pengukuran 1.8K. Dan terjadi anomali pada pemanasan 10000C terlihat penurunan magnetisasi pada suhu ~32K , kembali mengalami titik balik kenaikan magnetisasi pada suhu ~ 4K. Sedangkan pada pemanasan 8000C terlihat mulai terjadi kenaikan magnetisasi pada suhu ~123K tetapi kenaikannya tidak begitu besar kemudian pada suhu ~48K mulai terjadi kenaikan magnetisasi yang mencolok. Hal ini dimungkinkan karena pada pemanasan 8000C belum terbentuk fasa mayoritas CaMnO3.

Milling and annealing process in making materials of sample CaMnO3 have been by using and ball-mill of furnace at temperature 400°C, 600°C, 800°C and 1000°C with milling time 3, 6, 9 and 12 hours and also time annealing 3, 6 and 9 hours. Basic substances of CaMnO3 are CaCO3 and MnO2 with catalyst 2-propanol. All basic substances in powder form with mixing, milling, and annealing procedure. The chemical reaction occurred during milling and annealing process is as follows: CaCO3 + MnO2 CaMnO3 + CO2.
From the experiment it was identified with X-ray diffraction, we found new phase of CaMnO3 milling 12 hours, and annealing with 10000C for 9 hours. The compounds were characterized by Vibrating Sample Magnetometer (VSM) at P3IB-BATAN and Department Of Physics, Faculty of Sciences Tokyo Institute of Technology Japan. From the experiment we found the magnetic characteristic at ~121 K from annealing sample at 800°C and also at 1000°C.
The result of magnetic characteristic with annealing sample at 1000°C we know that there are coersivity improvement and 0,74 tesla and 3,71 emu/gram remanen with the measurement of temperature at 1.8K. And there are anomaly in annealing at 1000°C we found that there is magnetization degradation at ~32K, and again experience of a turning point increase of magnetization at 4K. While in annealing at 800°C seen to take its rise increase of magnetization at ~123K but increase of it not so big, then at 48K taking its rise increase of magnetization which striking. This matter is enabled because in annealing at 800°C not yet been formed by majority phase of CaMnO3.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20979
UI - Tesis Membership  Universitas Indonesia Library
cover
Muzadi Didik Optalnindi
"Telah dilakukan penelitian pengaruh waktu milling dan suhu rendah terhadap proses magnetisasi bahan LaMnO3. Lanthanum manganat adalah salah satu jenis senyawa oksida yang berasal dari tanah jarang dengan unsur transisi 3d merupakan senyawa penting yang masih diteliti beberapa dekade belakangan ini karena kegunaanya pada dunia industri bahan elektronik dan magnetik. Proses milling telah dilakukan pada bahan LaMnO3 berbentuk serbuk dengan lama waktu milling 3 jam dan 12 jam dan dipanaskan pada suhu pemanasan 800oC dan 1000oC dengan lama pemanasan 9 jam, identifikasi fasa bahan dengan menggunakan difraktometer sinar-x (XRD) diikuti dengan Scanning Electron Microscopy (SEM) untuk melihat ukuran butirannya, fasa baru LaMnO3 hasil paduan La2O3 dan MnO2 terbentuk setelah dilakukan proses milling selama 12 jam dengan suhu pemanasan 1000oC lama pemanasan 9 jam. Sifat kemagnetan bahan didapatkan dengan pengukuran VSM (Vibrating Semple Magnetometer) pada suhu pengukuran bervariasi mulai dari 1.8K; 60K; 195K; 220K; 270K dan 300K.
Dari hasil proses magnetisasi terjadi perubahan fasa magnetik dari paramagnetik ke feromagnetik pada suhu pengukuran T∼240K pada suhu pemanasan 800oC dan T∼220K pada suhu pemanasan 1000°C, terjadi lonjakan yang sangat besar kira-kira 9 kalinya pada harga besaran M/H antara bahan dengan suhu pemanasan 800°C dengan bahan suhu pemanasan 1000°C. Sifat kemagnetan bahan terutama nilai koersivitas Hc , magnetisasi remanen Mr dan magnetisasi saturasi Ms muncul pada suhu pengukuran 1.8K dengan Hc=0.045 Tesla, Ms = 49.7 emu/gram dan Mr = 12.5 emu/gram utnuk bahan pada suhu pemanasan 800°C, sedangkan pada bahan suhu pemanasan 1000°C hanya muncul nilai Ms-nya sebesar 287.5 emu/gram, nilai Hc dan Mr tidak muncul karena lop yang terbentuk non histerisis. Pada bahan dengan suhu pengukuran 300K bahan dengan lama waktu milling 12 jam memiliki nilai magnetisasi M tertinggi 3.1 emu/gram dibandingkan dengan lama waktu milling 3 jam yaitu 2.18 emu/gram pada nilai H yang sama 1 tesla. Semakin besar magnetisasinya menunjukan bahwa bahan mudah dimagnetisasi. Sifat kemagnetan bahan terlihat pada suhu pengukuran rendah 1.8K menunjukan sifat magnet feromagnetik, sedangkan pada suhu pengukuran tinggi menunjukan sifat magnet paramagnetik.

Research about milling time influence and low temperatur towards the LaMnO3 proces magnetization has been made. Lanthanum Manganate is one kind of oksidation compound which comes from rare earth with 3d transition patern which is very important compound which is still being observed in the last decade because of its utilities in the electronic and magnetic industrial word. The milling process had been done to LaMnO3 material in a form powder in 3 hours milling time and 12 hours and is sintered 800°C and 1000°C in the length of 9 hours sintering, material fase identification by using X-Ray Difraktometer (XRD) followed by Scanning Electron Microscopy (SEM) to see its particle size the LaMnO3 of new fase the mixture La3O3 and MnO2 will be form after the milling process for 12 hours with sintering 1000°C in 9 hours. The characteristic of magnetic material is got by measuring the Vibrating Sample Magnetometer (VSM) in the level of measuring varied from 1.8K, 60K, 195K, 220K, 270K and 300K.
From the result of the magnetism process there is a magnetic fase changing from parramagnetic to ferromagnetic in T ∼ 240K measurment temperature in 800°C sintering temperature and T ∼ 220K in 1000°C sintering temperature, big pompup happened 9 time bigger on M/H value between material with 800°C sintering and with the material of 1000°C sintering. The characteristic of the magnetic material mainly koercivitas Hc, remanen magnetization Mr, and Ms saturation magnetization appears in the measurment temperature of 1.8K with Hc = 0.045 Tesla, Ms = 49.7 emu/gram and Mr = 12.5 emu/gram for material in the 800°C sintering, whereas for the material of 1000°C sintering only comes up Ms value around287.5 emu/gram, value Hc and Mr do not come up because the loop formed is not histerisis. In the material with 800oC measurment temperature with 12 hours milling time will have the highest M magnetism value 3.1 emu/gram compared with 3 hours the magnetic material can be seen on 1.8K low measurment temperature with shows the characteristic ferromagnetic magnetic whereas in haigh measurment temperature sourch characteristic paramagnetic magnet.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20978
UI - Tesis Membership  Universitas Indonesia Library
cover
Boy Febrian Fachrul
"Hidrokarbon, seperti halnya grup aromatik. mempunyai struktur seperti sangkar {cage·like), yang menyebabkan oksidasi dari atom-atom karbon baglan dalam terhalangi. Lebih jauh. lagi, mereka berikatan dalam grup yang Iebib besar
(pseudo compounds) rnenembus bagian daiam dari gumpalan terhalangi dan hal ini menyebabkan tidak sempumanya pembakaran.
Penggunaan medan magnet pad a molekul hidrokarbon menyebabkan repulsi diantara rnolekul hidrokarbon {declustering), membuat jarak antar molekul yang optimaL Hal ini rneningkatkan interaks.i antara bahan bakar (hidrokarbon) dan oksigen, Lebih jauh lagi. pemanfaatan medan magnet menyebabkan perubahan spin elektron hidrogen dalam atom ke arah yang berlawanan. Dalam kasus atom hidrogen, hal ini meningkatkan energi dari atom hidrogen dan reaktifitas bahan baknr, seperti efisiensi pembakaran.
Pengujinn pengaruh magnetisasi dengan kompor minyak bertekanan dilakukan dengan menguji bcberapa variasi, yaitu laju alir solar, kuar medan magnet dan orientasi kutub magnet. Magnet yang digunakan terdiri dari tiga macnm, ya.ltu magnet baw.ng tanpa coaling berkekuatan 2370 Gauss, Super Fuel Ma."\ berkekuatan
4860 Gauss dan Car Booster (booster) berkekuatan 5500 Gauss.
Dari hasil penelitian didapatkan efisiensi termal dengan berbagai pengaruh
faklor, yaitu laju alir, kual medan magnet dan orientasi kmub magnet Berdasarkan
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
S49459
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dudung Abdu Kodir
"Semakin lama waktu milling maka akan diperoleh ukuran butir yang
lebih halus. Hal ini membuktikan bahwa apabila butiran semakin kecil,
maka berakibat luas permukaan kontak antar butir semakin besar yang
berarti pula porous bahan ini semakin kecil sehingga konduktivitas bahan
semakin baik ditandai dengan berkurangnya resistivitas bahan ini.
Resistivitas meningkat seiring dengan peningkatan lama
pemanasan. Hal ini disebabkan bahwa tingkat oksidasi bahan semakin
besar dengan lamanya proses pemanasan, yang berarti bahwa
kandungan oksigen pada bahan ini semakin besar.
Sifat resistivitas bahan akan cenderung menurun apabila bahan
tersebut dikenai medan magnet yang terus membesar. Jadi semakin tinggi
medan magnet, resistivitas sample semakin menurun
Secara umum ciri dari sifat positif magnetoresistance adalah resistivitas
bahan semakin meningkat apabila dikenakan medan magnet luar.
Sedangkan negative magnetoresitance adalah perubahan resistivitas
bahan semakin menurun apabila dikenakan medan magnet luar. Sifat
magnetoresistance yang lazim diteliti banyak orang adalah negative
magnetoresistance. Apabila gejala penurunan resistivitas ini cukup besar
maka disebut dengan sifat Giant Magnetoresistance (GMR)"
Depok: Universitas Indonesia, 2006
T20679
UI - Tesis Membership  Universitas Indonesia Library
cover
Sumarjianto
"Struktur kristal merupakan salah satu bagian dari analisis struktur mikro, untuk menganalisis hal ini yang sering dipakai metode Hanawalt dari kurva XRD. Struktur mikro suatu bahan yang tergantung pada ukuran butir. Bahan CaMnO3 yang merupakan campuran dari bahan dasar CaCO3 dan MnO2 terbentuk setelah melalui proses milling dan pemanasan. Proses milling yang dilakukan pada sampel dengan variasi waktu 3 jam, 6 jam, 9 jam, 12 jam melalui pemanasan dengan variasi 3 jam, 6 jam, dan 9 jam. Temperatur yang digunakan pada proses ini 400°C , 800°C dan 1000°C.
Hasil pengukuran difraksi sinar-X pada temperatur ruang menunjukan bahwa CaMnO3 dapat dihasilkan melalui pemanasan sampai 10000C. Sementara itu sampel dengan waktu milling 12 jam mulai mengarah ke pembentukan fasa baru CaMnO3 yang baik. Untuk mengindentifikasi bahan secara mikro dan perubahan ukuran butir digunakan Partikel Size Analyzer (PSA).

Structure Crystal represent one part of the micro structure analysis, to analyse this matter which is often weared by Hanawalt method from XRD curve. Micro Structure a materials which depend on item size measure. Materials CaMnO3 representing mixture from elementary materials of MnO2 and CaCO3 formed by after passing milling process and warm-up. Process conducted by milling sampel with time variation of 3 hour, 6 hour, 9 hour, 12 hour through warm-up with variation of 3 hour, 6 hour, and 9 hour. Used temperature at this process 400°C, 800°C and 1000°C.
Result of measurement X-ray diffraction at showed room temperature that CaMnO3 can be yielded to through warm-up until 1000°C. Meanwhile sampel with milling time 12 hour start flange to forming of new fasa good CaMnO3. For the identifying of materials microly and change of item size measure used by Particle Size Analyzer ( PSA).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2002
T20726
UI - Tesis Membership  Universitas Indonesia Library
cover
Raden Dewi Yupita Ratna Wangsih
"Pemberian doping La pada CaMnO3 akan membentuk sampel LaxCa1-xMnO3. Sampel ini dibuat dengan metode zat padat dari bahan dasar La2O3, CaCO3 dan MnO2 berdasarkan perhitungan stoikiometri untuk nilai x = 0,1 ; x = 0,5 dan x = 0,9. Preparasi sampel dimulai dengan uji XRD terhadap bahan-bahan dasar, kemudian mencampur semua bahan dasar dengan menggunakan ball mill selama 10 jam. Proses dilanjutkan dengan pemanasan menggunakan furnace dengan suhu 1350o C selama 12 jam, kemudian sampel dikompaksi untuk uji XRD. Sampel diball mill kembali selama 5 jam, kemudian di panaskan pada suhu 11000 C selama 24 jam, sebagian dikompaksi untuk uji XRD dan sebagian lagi tetap dalam bentuk serbuk untuk uji PSA.
Hasil karakterisasi sampel dengan XRD direfinement menggunakan program Fullprof. Berdasarkan analisis tersebut diperoleh imformasi mengenai hal-hal sebagi berikut ; untuk x = 0,1 ; x = 0,5 dan x = 0,9 pada sampel LaxCa1xMnO3. memiliki struktur kristal orthorombic.mmm; space group P n m a ( No. 62 ), dan peningkatan komposisi La tidak menyebabkan perubahan space group dan struktur kristal. Adanya meningkatnya komposisi La menyebabkan penyusutan ukuran butir kristal , penurunan nilai parameter kisi , volume unit sel dan kerapatan unit sel.

A Gift Doping La on CaMnO3 will form LaxCa1-xMnO3 sampel. The Sampels are made with solid state method from elementary materials of La2O3, CaCO3 and MnO2 based on calculation of stoichiometri for the value of x=0,1 ;x=0,5 ,x=0,9. XRD characterizatim is started for all of raw matrials. All elementary materials is mixed by using ball mill for 10 hours, The process is continued by using furnace with temperature 13500 C for 12 hours. The sample are compacted for the charactsization XRD. The sampel is milled again for 5 hours, then reheated again temperature 11000 C for 24 hours. A past of samples is compacted for the characterization of XRD and the remaining sample is still in form of powder for the characterization of PSA.
The XRD Result is refined by using Fullprof program. Based on the analysis we observe the following ; The crystal structure of LaxCa1xMnO3 x = 0,1 ; x = 0,5 and x = 0,9 is orthorombic with space group P n m a ( No. 62 ), the in creasing of doping is not changed the crystal structure and space group of the samples, but lowering crystal size, lattice parameter, volume and dencity of unit cell.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
T21312
UI - Tesis Membership  Universitas Indonesia Library
cover
Hedi Eka Maulana
"ABSTRAK
Indonesia memiliki cadangan pasir besi yang tinggi, umumnya terdapat di sepanjang selatan pulau jawa. Pasir besi mengandung beberapa mineral berharga yang mengandung Titanium seperti ilmenite, titanomagnetite dan rutile. Penelitian ini akan membahas tentang pengaruh waktu reduksi terhadap peningkatan kadar titanomagnetite pada pasir besi dengan penambahan aditif Na2SO4 sebanyak 15 sebagai katalis dengan variasi waktu 10, 20, dan 30 menit pada suhu 800OC. Dibutuhkan tahap roasting agar dapat memaksimalkan proses pemurnian pasir besi dengan penambahan Na2CO3 dengan perbandingan 1:0.4 Dari hasil pengujian XRD dan data analisa perhitungan semi-kuantitatif menggunakan Software HighScore Plus diperoleh peningkatan kadar senyawa titanomagnetite yang optimum pada waktu reduksi selama 30 menit dengan jumlah senyawa titanomagnetite xFe2TiO4 1-x Fe3O4 sebesar 36

ABSTRACT
Indonesia has rich deposit of Iron Sand that can be found along of the Java southern part island. Iron sand contains some Ti Rich minerals such as ilmenite, titanomagnetite dan rutile. This study aims to determine the effect of time variation on the results of Increasing titanomagnetite in iron sand and addition of 15 Na2SO4 as a catalyst. Variation of this reasearch are respectively 10 minutes, 20 minutes and 30 minutes with reduction temperature at 800OC. It takes the stage of roasting to condition the ore to be more easily reduced and increase the metal content so that it can maximize the iron sand purity with addition of Na2CO3 additive with mass ratio 1 0.4 . Based on the XRD and Semi Quant equation using Software HighScore Plus, optimal time for reducing iron sand with coal at 800OC is 30 minutes, which produce content of titanomagnetite as much as 36 ."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Purwo Sri Sedono
"Bahan manganat CaMnO3 adalah bahan yang mengalami transisi fase magnetik dari keadaan isolator (paramagnetik) menjadi konduktor (feromagnetik) atau sebaliknya. Preparasi bahan CaMnO3 dilakukan melalui proses reaksi zat padat yaitu dengan mencampurkan bahan dasarnya yang terdiri dari CaCO3 dan MnO2 sesuai dengan perhitungan stoikiometri. Proses pencampuran dilakukan dengan menggunakan ball mill dengan variasi waktu penggerusan 3, 6, 9 dan 12 jam. Setelah itu proses preparasi dilanjutkan dengan memberikan perlakuan panas dengan variasi suhu pemanasan 400°C, 600°C, 800°C dan 1000°C serta variasi lama pemanasan 3, 6 dan 9 jam.
Pengukuran ESR terhadap CaMnO3 telah dilakukan pada temperatur ruang dengan lebar sapuan 500 mT dan pada frekuensi 9,47 GHz. Hasil pengukuran ESR menunjukkan bahwa CaMnO3 bersifat paramagnetik yang secara dominan berasal dari bahan dasar MnO2. Pada temperatur pemanasan 800oC, penambahan waktu milling tidak memberikan pengaruh yang cukup signifikan terhadap faktor g Lande dan konsentrasi spin paramagnetik bahan belum memiliki satu pola yang konsisten. Sementara itu, pengaruh tersebut mulai terlihat pada temperatur pemanasan 1000oC dengan indikasi kenaikan nilai g dari 2.07 hingga 2.12 dan penurunan konsentrasi spin paramagnetik bahan. Pengaruh temperatur pemanasan pada waktu milling 12 jam dan waktu pemanasan 9 jam terlihat dengan adanya kenaikan nilai g dari 2.07 hingga 2.46 dan kenaikan konsentrasi spin paramagnetik bahan.

CaMnO3 is a manganate sample that undergoes magnetic phase transistion from paramagnetic insulator to ferromagnetic conductor or vice versa. Preparation of CaMnO3 was done by solid state reaction (mixing the raw materials of CaCO3 dan MnO2) based on the stoichiometric calculations. The mixing processes was done by using ball mill equipment and by varrying the milling time of 3, 6, 9 and 12 hours. The processes is then continued by giving heat treatment with the temperature variations of 400°C, 600°C, 800°C and 1000°C and also with the heating time variations of 3, 6 and 9 hours.
ESR measurements of CaMnO3 was done at room temperature with sweep width of 500 mT and frequency of 9.47 GHz. ESR results showed that at room temperature, CaMnO3 was paramagnetic that was dominantly originated from the raw material of MnO2. At a heating temperature of 800oC, an increasing of milling time did not give significant influences to the g Lande factor and also the concentration of paramagnetic spins of the sample did not show a tendency to a concistence. However, the influences was slightly observed at a heating temperature of 1000oC identified by the increasing of the g Lande factor from 2.07 to 2.12 and also by the decreasing of the concentration of paramagnetic spins of the sample. The influence of heating temperature at milling time of 12 hours and heating time of 9 hours is identified by an increasing of g Lande factor from 2.07 to 2.46 and also by the increasing of the concentration of paramagnetic spins of the sample.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20648
UI - Tesis Membership  Universitas Indonesia Library
cover
"Abstrak Telah dilakukan pemodelan secara statistik untuk menentukan besar magnetisasi bahan LaMnO3 pada fase paramagnetik dan fase ferromagnetiknya. Dengan mengetahui besar momen magnet atomik bahan LaMnO3 sesuai dengan aturan Hund, Magnetisasi bahan tersebut dapat dihitung dengan persamaan Brillouin. Pada fase ferromagnetik selain pemodelan statistik, digunakan pula pendekatan weiss molecular field dalam memperhitungkan intereksi antar momen magnetnya. Temperatur bahan LaMnO3 semakain rendah, besar magnetisasi bahan tersebut semangkin tinggi. Perubahan fase dari paramagnetik ke Ferromagnetik terjadi pada temperatur transisi 202 K. kata kunci : Weissmolecular Field, Aturan Hund, Persamaan Brillouin, Paramegnetik, Ferromagnetik"
Universitas Indonesia, 2007
S28906
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Chalid
"Penelitian ini ditujukan untuk mengamati karakteristik kerosin secara eksitu setelah magnetisasi sistim dua kutub yang saling berlawanan (dipole) dan berhadapan satu dengan yang lain. Hasil penelitian menunjukkan bahwa teknik magnetisasi memberikan perubahan pada karakteristik kerosin. Kepolaran dan viskositas secara berturut-turut diamati dengan pengukuran indeks refraksi dan viskositas. Pemberian medan magnet sebesar 4330 Gauss dengan lama magnetisasi 60 menit memberikan peningkatan indeks refraksi dari 1,447 menjadi -1,449 serta menurunkan nilai viskositas dari 1,278 menjadi 1,256. Hal ini memperkuat kemungkinan terjadinya declustering serta peningkatan kepolaran pada molekul penyusun kerosin. Perubahan yang terjadi tidak sampai mengakibatkan terjadinya perubahan komposisi dan struktur. Hal ini diindikasikan dengan hasil pengujian kromatografi gas dan spektroskopi infra merah.

Dipole Magnetization Effect to Kerosene Characteristics. Investigation of kerosene characteristics has been done by ex-situ dipole magnetization. The results show that magnetization technique can be able to influence kerosene characteristics. Polarity and viscosity of the kerosene are observed by measuring refractive index and viscosity. An hour of 4330 Gauss flux magnetic will increase refractive index from 1.447 to 1.449 and decrease the viscosity from 1.278 to 1.256. Those changing support de-clustering occurrence and polarity increment of kerosene molecule. Gas chromatography and infrared result show that those changing do not alter kerosene structure and composition."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>