Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8342 dokumen yang sesuai dengan query
cover
Firta Satriana
"Banyaknya kerusakan struktur bangunan yang diakibatkan oleh gempa bumi membuat penulis ingin mencoba melakukan simulasi terhadap terhadap suatu model struktur baja dengan menggunakan Program bantu DRAIN-2DX. Pemilihan struktur dari baja karena penulis mempunyai anggapan bahwa struktur baja mempunyai respon terhadap gempa yang lebih baik dibandingkan struktur bangunan yang terbuat dari beton. Selain itu struktur baja dapat melakukan deformasi cukup lama sebelum strukturnya mengalami kegagalan. Perancangan model bangunan dengan struktur baja dilakukan dengan menggunakan standar AISC dan "Pedoman Perencanaan Ketahanan Gempa Untuk Rumah Dan Gedung 1987". Selain itu penulis menggunakan program bantu SAP90 untuk mempercepat penghitungan profil struktur. Sebagai alat simulasi gempa digunakan program bantu DRAIN-2DX dengan input gema EI-Centro. Dari hasil output nya dapat dilihat terjadinya deformasi plastis selama gerakan dinamis struktur yang diakibatkan oleh gaya gempa."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S35006
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Bendaraningayu Kartikasari
"Gempa sebagai beban lateral yang sangat berpengaruh terhadap bangunan merupakan peristiwa yang acak, tidak dapat diperkirakan sebelumnya, dan hanya dapat dipahami secara parsial. Baja dapat dijadikan pilihan material yang ideal untuk desain yang tahan gempa bumi. Hal ini disebabkan baja memiliki tingkat daktilitas dan penyerapan energi yang tinggi. Maka dari itu 'steel frame' dapat menjadi alternatif bangunan tahan gempa. Untuk memberikan kekakuan yang besar pada steel frame, diperlukan suatu sistem rangka yang dapat menahan gaya lateral dan mencegah pergeseran yaitu diantaranya adalah dengan pemasangan Eccentrically Braced Frame (EBF). EBF merupakan kombinasi dari Moment Rising Frame (MRF) dan Cencentrically Braced Frame ( CBF). Dimana CBF merupakan frame yang memiliki kekakuan tinggi seperti CBF serta daktilitas dan kapasitas penyerapan energi yang baik seperti MRF.
Penulisan ini bertujuan untuk mendapatkan desain open frame dan braced frame tahan gempa serta menganalisa respon frame tersebut akibat beban gempa. Untuk mengetahui perilaku dari struktur MRF dan EBF akibat pengaruh beban dinamik dilakukan analisa time history pada struktur bangunan tersebut menggunakan program komputer DRAIN-2DX. Sebelumnya struktur didesain secara statik menggunakan program SAP 2000 dengan menggunakan desain kapasitas.
Analisa dinamik yang dilakukan adalah analisa non linier inelastis time history. Penggunaan analisa ini didasarkan pada alasan analisa ini merupakan analisa yang paling lengkap dimana perencana dapat memperoleh tingkah laku struktur terhadap beban gerakan tanah akibat gempa rencana yang ditentukan, dimana terjadinya kondisi inelastik, dan kapan terjadinya kondisi tersebut.
Dari analisa statik maupun dinamik, baik pada struktur MRF maupun EBF, dapat ditunjukkan bahwa keduanya memiliki kemampuan daktilitas yang tinggi. Agar tetap memenuhi kondisi perencanaan struktur dalam taraf survival, struktur MRF dan EBF dapat memenuhi mekanisme dissipasi energi yang telah ditentukan yakni strong column weak beam.
Adanya link pada struktur EBF dapat menyerap energi gempa yang besar dan mengurangi respon dinamik struktur dengan menambah redaman dan periode alami vibrasi pada bangunan. Ini berarti link diizinkan leleh terlebih dahulu dibanding elemen lainnya.
Dari yielding sequence dapat dilihat, balok MRF leleh terlebih dahulu dibanding balok EBF, walaupun pada kedua struktur tersebut diberlakukan beban gempa rencana yang sama. Pada perencanaan sebelumnya, berat seluruh profil pada MRF lebih besar daripada profil EBF. Hal ini berarti, pada kondisi kemampuan berperilaku daktail yang hampir sama, struktur EBF dapat didesain lebih ringan daripada struktur MRF. Pada desain ini, diperoleh EBF lebih ringan 85% dibanding MRF. Ini berarti struktur lebih ekonomis dari segi biaya, dan cukup efektif. Meskipun terdapat perbedaan waktu terjadinya sendi plastis pada kedua struktur tersebut, baik struktur MRF maupun EBF mampu menunjukkan perilaku penyerapan energi yang baik."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S35023
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anny Irhamy
"Umumnya analisa struktur baja direncanakan dengan menggunakan sambungan kaku (jepit) penyederhanaan atau sambungan sendi. Hal ini bertujuan untuk perencanaan, meskipun penyederhanaan tersebut mempermudah dalam analisa namun pada kenyataannya tidak demikian. Pada sambungan umumnya terjadi rotasi sehingga yang terjadi di lapangan adalah sambungan semi kaku (semi rigid) Selain dengan sambungan semirigid untuk memperoleh hasil yang akurat dalam menganalisa portal baja maka digunakan analisa nonlinear.
Analisa non-linear merupakan alternatif lanjutan untuk mengatasi keterbatasan analisa struktur elastik linear. Deformasi yang besar merubah lokasi dan distribusi beban, sehingga persamaan keseimbangan harus disusun lagi dengan mempertimbangkan geometri struktur setelah bedeformasi, yang belum dapat diketahui sebelumnya. Penggunaan analisa struktur dengan cara elastik linear tidak tepat oleh karena itu diperlukan analisa struktur elastik yang dapat mengantisipasi kondisi non-linear tersebut.
Pada tesis ini disusun dalam rangka merekonstruksi kembali sebagian program dari desertasi J.P Muzeau [M1] kedalam bahasa program MS-Visual Fotran dan setelah itu dilakukan beberapa studi kasus pada portal baja sederhana untuk memvalidasi program tersebut Pada tesis ini akan dijumpai non-linear geometri dan material dengan aplikasi untuk sambungan semikaku pada struktur portal baja, besarnya pertambahan beban akan mempengaruhi bentuk grafik elastisitas yang akan dihasilkan walaupun pada analisa ini masih terdapat perbedaan hasil akhir dengan hasil peneliti sebelumnya."
Depok: Fakultas Teknik Universitas Indonesia, 2005
T40636
UI - Tesis Membership  Universitas Indonesia Library
cover
Andy Prabowo Pho
"[ABSTRAK
Adanya peningkatan KLB (Koefisien Lantai Bangunan) pada daerah padat di
Jakarta, memungkinkan para pemilik gedung melakukan perluasan bangunan
secara vertikal dengan menambah struktur baja di atas struktur beton bertulang
eksisting. Seringkali sambungan rigid dipakai pada sambungan kolom dasar
struktur baja di atas struktur beton dengan mengasumsikan terjadi hubungan
menerus antara baja dengan beton. Pada kenyataanya asumsi ini belum tentu
benar akibat dari kemampuan sambungan sesungguhnya yang terbatas oleh
kapasitas dan kekakuannya. Sehingga asumsi tersebut perlu dievaluasi
kebenarannya demi menjaga perilaku struktur dan sambungan.
Untuk itu, penelitian ini melakukan evaluasi hasil perancangan sambungan rigid
pada dasar kolom baja dengan memodelkan sambungan menjadi pegas yang
menghubungkan struktur baja dan struktur beton. Kekakuan rotasi sambungan
dimodelkan secara non-linier untuk mendapatkan perilaku pasca leleh dari analisis
pushover. Kekakuan sambungan diperoleh dari konfigurasi sambungan hasil
perancangan yang melibatkan nilai overstrength factor (Wo) sesuai ketentuan
AISC 341. Pada penelitian ini terdapat 7 variasi kekakuan sambungan yang
didasarkan variasi Wo pada kombinasi gaya-gaya di sambungan dan mutu angkur
(Fu) pada nilai Wo tertentu.
Hasil penelitian menunjukkan penurunan besarnya kekakuan sambungan akibat
penurunan nilai Wo tidak mengurangi aksi sambungan rigid. Adanya variasi nilai
Wo pada perancangan sambungan rigid tidak berpengaruh langsung nilai R dan Wo
dari hasil pushover. Adanya variasi mutu angkur (Fu) juga tidak berpengaruh
signifikan pada perilaku struktur. Hanya sambungan yang didesain dengan Wo = 1
menunjukkan perilaku non linier dan dimungkinkan terjadinya gagal geser. Untuk
menjaga kekuatan di sambungan saat terjadi gempa di luar rencana pada struktur
dan menjamin agar sambungan tetap berperilaku elastik, sambungan perlu
didesain dengan menggunakan Wo minimal sebesar 1,5.

ABSTRACT
An increase in Floor Area Ratio (KLB) in dense areas of Jakarta, enabling
building owners to extend their building vertically by adding the steel frame
structures above the existing reinforced concrete structures. A rigid connection of
steel column bases above the concrete structures is often used by assuming a
continous joint between steel and concrete. In the fact, this assumption is not
necessarily true since the connection behaviour is limited to the capacity and
stiffnesses. This may lead to evaluate the assumption so the overall structural and
connection behaviour are controlled.
Therefore, this research evaluates the rigid connection design by modeling the
column base connections using spring connecting steel frame structures and
concrete frame structures. The non linear rotational stiffness of the spring is
modelled to obtain post yielding behavior from the pushover analysis. The
connection stiffnesses are provided from connection designs involving
overstrength factor (Wo) as prescribed in AISC 341. There are 7 connection
stiffness variations are built in this research based on Wo variations on loading
combinations and anchor grade variations (Fu) for certain value Wo.
The results showed a decrease in connection stiffness due to reduction value of Wo
independent to the connection rigidity actions. Variation of Wo in the rigid
connection design has no direct impact on the value of R and Wo from pushover
analysis. The anchor grade variations has no significant effect on the structural
performance. The non linear behaviour and possibility of shear failure of the
connections are happened only when using Wo = 1. The connections shall be
designed by minimum Wo = 1,5 to ensure the connection strength and the
connection behavior still remains elastically when a greater earthquake force is
subjected to the structure;An increase in Floor Area Ratio (KLB) in dense areas of Jakarta, enabling
building owners to extend their building vertically by adding the steel frame
structures above the existing reinforced concrete structures. A rigid connection of
steel column bases above the concrete structures is often used by assuming a
continous joint between steel and concrete. In the fact, this assumption is not
necessarily true since the connection behaviour is limited to the capacity and
stiffnesses. This may lead to evaluate the assumption so the overall structural and
connection behaviour are controlled.
Therefore, this research evaluates the rigid connection design by modeling the
column base connections using spring connecting steel frame structures and
concrete frame structures. The non linear rotational stiffness of the spring is
modelled to obtain post yielding behavior from the pushover analysis. The
connection stiffnesses are provided from connection designs involving
overstrength factor (Wo) as prescribed in AISC 341. There are 7 connection
stiffness variations are built in this research based on Wo variations on loading
combinations and anchor grade variations (Fu) for certain value Wo.
The results showed a decrease in connection stiffness due to reduction value of Wo
independent to the connection rigidity actions. Variation of Wo in the rigid
connection design has no direct impact on the value of R and Wo from pushover
analysis. The anchor grade variations has no significant effect on the structural
performance. The non linear behaviour and possibility of shear failure of the
connections are happened only when using Wo = 1. The connections shall be
designed by minimum Wo = 1,5 to ensure the connection strength and the
connection behavior still remains elastically when a greater earthquake force is
subjected to the structure, An increase in Floor Area Ratio (KLB) in dense areas of Jakarta, enabling
building owners to extend their building vertically by adding the steel frame
structures above the existing reinforced concrete structures. A rigid connection of
steel column bases above the concrete structures is often used by assuming a
continous joint between steel and concrete. In the fact, this assumption is not
necessarily true since the connection behaviour is limited to the capacity and
stiffnesses. This may lead to evaluate the assumption so the overall structural and
connection behaviour are controlled.
Therefore, this research evaluates the rigid connection design by modeling the
column base connections using spring connecting steel frame structures and
concrete frame structures. The non linear rotational stiffness of the spring is
modelled to obtain post yielding behavior from the pushover analysis. The
connection stiffnesses are provided from connection designs involving
overstrength factor (Wo) as prescribed in AISC 341. There are 7 connection
stiffness variations are built in this research based on Wo variations on loading
combinations and anchor grade variations (Fu) for certain value Wo.
The results showed a decrease in connection stiffness due to reduction value of Wo
independent to the connection rigidity actions. Variation of Wo in the rigid
connection design has no direct impact on the value of R and Wo from pushover
analysis. The anchor grade variations has no significant effect on the structural
performance. The non linear behaviour and possibility of shear failure of the
connections are happened only when using Wo = 1. The connections shall be
designed by minimum Wo = 1,5 to ensure the connection strength and the
connection behavior still remains elastically when a greater earthquake force is
subjected to the structure]"
2015
T44601
UI - Tesis Membership  Universitas Indonesia Library
cover
"Lendutan yang terjadi pada struktur blok atau rangka batang akan berbanding lures dengan panjang bentang balok atau rangka batang tersebut, artinya semakin panjang bentang maka lendutan yang terjadi akan sernakin besar, diiihat dari aspek teknis lendutan yang besar akan mengurangi keamanan struktur oleh karena itu lendutan yang terjadi harus dibmasi. Pembatasan lendutan ini selanjutnya disebut dengan lendutan izin yang besarnya menurut Peratu.ran Perencanaan Bangunari Baja Indonesia (PPBBI 1984) adalah L1360 dimana L adalah panjang bentang struktur tersebut. Apabila struktur baloklrangka baja mengalami lendutan yang melebihi lendutan ijinya belum tentu bahwa struktur tersebut tidak kuat terhadap beban atau gaya yang dipikulnya, karena kontrol lendutan baru bisa dilakukan setetah ukuran profil ditentukan terlebih dahulu. Adanya kontrol lendutan adalah sebagai syarat dari days layan (serviceability) dari suatu struktur. Kasus yang akan dianalisa oleh penulis adalah yang terjadi pads Jembatan Pipa Pertamina Cipunegara, dimana lendutan yang terjadi adalah 31,30 cm sedangkan lendutan yang diijinkan untuk bentang 80 m adalah 22,20 cm (L1360 sedangkan berdasarkan data yang diperoleh penulis hasil perhitungan kontraktor lendutan yang diijinkan adalah 1,1300 atau 26 cm) sehingga dapat disimpulkan bahwa lendutan yang terjadi melebihi dari yang diijinkan. Untuk mengatasi hal ini dengan tidak mengganti profil yang telah dipakai maka pada jembatan tersebut dipasang kabel prategang external pada kedua balok induk jembatan, sehingga dengan memberikan gaya tank pads kabei prategang diharapkan lendutan yang ter adi pada jembatan tersebut akan lebih kecil. Dalam Tugas Akhir ini penulis akan menganalisa berapa besarnya gaya prategang yang harus diberikan sehingga sehingga lendutan yang terjadi lebih keeil dari yang diij:nkan_ Untuk perhitungan lendutan yang terjadi pada struktur rangka penulis akan menggunakan program komputer seperti STAAD Ill"
Fakultas Teknik Universitas Indonesia, 2002
S35660
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarwa Santosa
"Analisis struktur bangunan seperti gedung bertingkat adalah Salah satu prosedur yang harus dilakukan seorang perancang, untuk mencapai hasil perancangan yang aman bagi pengguna bangunan, ekonomis, mudah dilaksanakan dan diharapkan dapat memenuhi tuntutan fungsi dan estitika sebaik mungkin. Secara teknis tujuan analisis kita adalah untuk mendapatkan hasil perancangan yang berfungsi dengan baik dan aman.
Sebagai ilustrasi untuk pembahasan dalam tulisan ini penulis melakukan perancangan struktur baja untuk gedung ll lantai, berukuran l0x35x39 meter dan berdiri diatas tanah lunak di Jakarta yang diperuntukkan sebagai kantor, System yang digunakan Eksentris Braced Frame (EBF) dan Moment Resisting Frame (MRF). Metode yang digunakan untuk perancangan konstruksi bajanya adalah metode elastis menurut spesifikasi AISC-LRFD 1994 dan Tata Cara Perencanaan Ketahanan Gempa untuk Rumah dan Gedung 1987 untuk analisis pembebanannya, sedang untuk analisis pembebanan Iateralnya menggunakan analisis dinamik respon spektrum dengan kombinasi SRSS . Spesifikasi bahan yang digunakan adalah baja A36 (fy = 36 ksi) dan Electrode Las E420 (fu = 4.200 kg/cm2.)
Adapun isi pembahasannya mencakup pemilihan system struktur, analisis pembebanan menurut pedoman perencanaan pembebanan untuk rumah dan gedung, analisis mekanika struktur dengan program aplikasi STAAD-III ver. 2.1. dan perancangan struktur baja dengan metode elastis menurut spesifikasi AISC-LRFD 1994.
Dari hasil analisis kita akan mempelajari beberapa perbedaan yang diperolch dari kedua system struktur yang meliputi jumlah pekerjaan sambungan, berat struktur dan respon struktur, yaitu defleksi maksimum, interstory drift dan gaya geser lingkat."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S35707
UI - Skripsi Membership  Universitas Indonesia Library
cover
Supriyadi
"Baja perkakas SKD 11 merupakan bzy`a perkakas yang banyak digunakan dalam industri karena memiliki si/ar kekerasan yang tinggi dan fahan aus akibat kandungan kromiun yang tinggi sekitar 11-13%. Banyak peralatan per/nesinan yang menggunakan bahan baja perkakas SKD 11 dalam dunia induslri masih impor dari luar negeri, unruk ilu dilakukan penelitian ini sehingga diharapkan dapal mengurangi kelergantungan perkalfas baja SKD I 1' dari luar negeri dan seecara ridalc langsung rnaka biaya produ/ui dapai dikurangi.
Pengoptimalan sU`a! bqia perkakas SKD 11 dapal dilakukan dengan perlakuan panas yang terdiri aras prehearing, ausrenfsasi, quenching dan lemper. Penefilian ini dilakukan unruk mengeta/mf dampak Iempel' lunggaf dan temper ganda terhadap Sifdl kekerasan baja perkakas dan srruktur mi/fro. Proses remper dilaksanakan dalam berbagai Iemperarur. Dari pengujian yang dflakukan didapafkan hasil bah wa baik temper runggal maupun lemper ganda menghasilkan srruktur marrensir temper dan karbida. Kekerasan alfan berkurang dengan meningkalnya lemperarur remper kecuali pada kondisi dimana tedadi prisriwa secondary hardening. Pada kondisi inf baja SKD Il memiliki kekerasan yang tinggi_ Secondary hardening rampal: terjadi jika baja SICD 11 diremper pada 425"C baik pada femper tunggal rnaupun lemper ganda. Temper ganda akan mengahasilkan kekerasan yang cenderung lebih rendah dibandingkan Iemper tunggal."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S41448
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyuaji NP
"Baja ASSAB XW-42 (vetara dengan AIS! D2) merupakan baja perkakas pengeqaan dingin dengan kadar karbon dan kromium yang tinggi. Untuk aplikasinya. Inga ASSAB XW-42 ini banyak digunalcan umulc afal pemarong, punch dan dies, yung memerlukan kekerasan, ketalzanan aw: yang linggi dun kestabilan dimensi yang baik
Pada penelirian ini digzmakan 3 variabel temperatur au.s'1enisasi yaitu pada 980"C, I010"C dan I040”C, dan dengan 4 kondisi pada musing - masing variabel temperatur yaim as quench, quench lemper, as subzero dan .vubsero rempcr.
Hasil pene/ilian nzemmju/ckan bahwa perlrzkunn subzero meningkalkan kekemxan yailu dari 52,49 HRC menjadi 53,06 HRC pada temperutur 9800C,‘ 52,72 HRC menjadi 52,86 HRC pada temperalw' 101 0” C; 52,29 HRC menjadi 53,37 HRC pada remperalur I0-10” C. Perlakuan subsero juga meningkaflfan ketahanan aus dengan menurzmkan laju aus yairu dari 3, 99xl 04 mm’/mm merjadi 3,-I5xl0" mms/mm pada remperatur 9800C; 4,06x10“ mm"/mm menjadi 3,83.r10'6 mmj/lvnm pada Iempcratur I Ol 00 C; 4,00xI04 mms/mm menjadi 3,94.rl0'6 mm’/mm pada temperatur 10400 C.
Untuk ketanggu/mn, perlalruan subzero juga menirrglrarkan harga impak aim dari 0,033 .loule/mm? menjadi 0,036 Joule/Jwrng padu femperalur 101066: 0,036 Joule/Jmmz menjadi 0,0-I7 Joule/mm2 pada remperarur 10-IOUC. Harga impak rurzm pada temperalur 980° C yaitu duri 0, 038 Joufe/mm? menjadf 0,033 ./oulefinml.
Penfrzgkaran /cefalzanan aus ini disebabkan kareua lerbemzzkrzya karbidu yang Iebih merara dan halus. Dari hasil pengzyiarz dapaf disimpulkan bahwa perlalman .s-ub:ero ram - ram menai/dean 1,1-1% kekeraxan, 7,49% kerahancm aus dan 156%
kerangguhan dibandingkan dengun ranpa perlulruan subsero.
Peningkamn syn: material yang optimal refjadi dengan mclakukan proses remper serefa/1 proses .subzero dilakukcm_
Puda fom mikro fer/ihur srrukfur /mrbida yang febi/1 /wins dan mermu has!!
perlakuan subzero. Perbedaan warm: rnarrilrs cmrara sampel ranpu dan dengan tenyner menwyulrkau adargfa perubahan rrmtrilm yaifu pcrubalzan marrensif menjadi murfensir Iemper. Dari hasil jblo mi/fro tidak dapat diamati per:1ba!1m1 persentase austeni! sisa dun per.s-enlase marlensir."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S41793
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martin Ulpan
"Pemodelan sambungan sendi pada analisis struktur baja biasanya disederhanakan dengan hanya melakukan release moment. Sedangkan keberadaan pelat buhul (gusset plate) dan eksentrisitasnya diabaikan. Pada penelitian ini dikaji pengaruh gusset plate pada respon struktur ketika komponen tersebut dimodelkan dan eksentrisitasnya diperhitungkan. Kemudian, analisis dilakukan dengan 3 macam pemodelan. Pertama, sambungan sendi dimodelkan dengan release moment. Kedua, gusset plate dan baut (untuk memunculkan efek eksentrisitasnya) pada sambungan sendi dimodelkan sebagai frame. Terakhir, sama dengan pemodelan kedua namun sebagai elemen shell. Variasi pembebanan yang dilakukan selain pada kondisi ideal juga terhadap adanya eksentrisitas pembebanan, faktor kejut, dan beban gempa. Untuk studi kasusnya yaitu pada bangunan struktur baja pabrik butadiene yang menahan sebuah mesin kondensor. Hasilnya, terjadi kenaikan nilai rasio tegangan dan rasio puntir yang cukup signifikan pada pemodelan kedua dan ketiga. Bahkan banyak sambungan sendi yang menjadi gagal terutama pada sambungan yang dekat dengan lokasi beban besar.

Modeling shear connection on steel structure analysis, commonly simplified by doing release moment. While the existence of gusset plate and its eccentricity were ignored. This study was examined the effect of gusset plate on structure response when its component was modeled and the eccentiricity was considered. Then, the analysis was done with 3 kinds of modeling. Firstly, the shear connection was modeled by releasing moment. Secondly, gusset plate and bolt (to appear its eccentricity) on the shear connnection were modeled as frame. The last, similar with second modeling, but as shell element. Loading variations that were assigned beside in ideal condition, also toward the loading eccentricity, impact factor, and seismic load. The case study was taken at steel structure building of butadiene factory that hold a condensor machine. As the result, the stress ratio and torsion ratio increased significantly at second and third modeling. Even, many shear connections were being failure especially in connection that close to the big loading."
2013
S52931
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>