Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 48886 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1992
S35999
UI - Skripsi Membership  Universitas Indonesia Library
cover
Catur Apriono
"Pengukuran antena dilakukan untuk mengetahui kinerja dari antenna. Sistem pengukuran yang biasa digunakan adalah metode medan jauh. Namun, jika antena memiliki dimensi besar, maka batas medan jauh yang harus dipenuhi dalam pengukuran menjadi lebih panjang. Sehingga pengukuran antena yang dilakukan di ruang anti gema (anechoic chamber) dengan jarak medan jauh antena melebihi ukuran dimensi ruang tidak dapat dilakukan.
Salah satu solusi untuk mengatasi masalah ini adalah pengukuran dengan metode medan dekat. Berdasarkan koordinat permukaan pengukuran, terdapat tiga metode yang dikenal pada pengukuran medan dekat, yaitu planar, cylindrical dan spherical. Dalam implementasinya, ketiga metode tersebut meningkat dalam tingkat kerumitan perancangannya.
Pada penelitian ini membahas mengenai rancangan perangkat lunak dan sistem pengukuran medan dekat antena dengan bidang pengukuran silindris untuk melengkapi fasilitas di ruang anti gema (anechoic chamber). Perancangan perangkat lunak yang diperlukan melakukan transformasi data medan dekat hasil pengukuran menjadi data medan jauh. Selain itu, diperlukan juga program untuk pembacaan data dari alat ukur, mengatur sudut perputaran rotator dan pergerakan antena penjejak di daerah pengukuran. Tiap komponen pengukuran terhubung dengan komponen lainnya membentuk sistem pengukuran antena medan dekat dengan metode silindris.
Output yang didapat dari penelitian ini berupa pola radiasi medan E dari antena yang diukur. Pengujian program transformasi dilakukan dengan melakukan perbandingan data medan dekat yang ditransformasi ke medan jauh dengan data medan jauh dari simulasin antena. Sedangkan pengujian sistem pengukuran dengan melakukan perbandingan data pengukuran medan dekat yang ditransformasikan ke medan jauh dengan data yang diperoleh dari pengukuran medan jauh secara langsung.
Hasil transformasi dengan menggunakan data simulasi memberikan nilai penyimpangan error sebesar 3.184188 dB dengan penyelesaian FFT-1D, 2.708618 dB menggunakan FFT-2D dan 3.5184181dB dengan menggunakan metode numerik, dimana menunjukkan bahwa efisiensi dan keakuratan transformasi terletak pada penggunaan algoritma FFT-2D.
Pada implementasi pengukuran Antena microstrip Array 8, hasil terbaik didapat dengan metode algoritma FFT-2D dimana transformasi tanpa kompensasi probe mendapatkan nilai penyimpangan rata-rata sebesar 3.28886 dB, waktu komputasi 0.365671 detik, dan nilai Axial Ratio 38.8865 dB. Sedangkan untuk kondisi dengan memperhatikan kompensasi probe mendapatkan nilai penyimpangan rata-rata 3.035867 dB, waktu komputasi 0.485675 detik, dan Axial Ratio 40.3505 dB. Faktor kompensasi probe dapat menekan penyimpangan kesalahan khususnya pada daerah radiasi sidelobe dari antena.

Antenna measurement is conducted to determine the performance of the antenna. The common measurement system used is the far field method. However, if the antenna has a large dimension, the far-field edge that must be fulfilled in the measurement becomes longer. So, the antenna measurement conducted in Anechoic Chamber with antenna's farfield distance exceeding the dimension of the room can not be done.
The solution to solve this problem is the near-field measurement system. Based on the coordinates of the surface measurements, there are three methods in the near field measurement: planar, cylindrical and spherical. In its implementation, all three methods increases in the complexity of its design.
This study discusses about the design of software and near-field antenna measurement with cylindrical plane to complete the facilities in the anechoic chamber. The software is required to transform near-field data to the far-field data. The program also needed for reading data from measurement devices, setting up the angle of rotator rotation and antenna tracking movements in the area of measurement. Each component of the measurement connected with other components form a near-field antenna measurement system with cylindrical method.
The output obtained from this research is a field radiation pattern E of the antenna under test. Testing of the program is conducted by comparing the transformation between nearfield data that transformed into far-field data and far field data simulated from the antenna. While the measurement system testing is conducted by comparing the near-field measurement data that are transformed into the far-field and data obtained from direct measurement of the far-field.
The results of transformation by using simulation data yield error deviation of 3.184188 dB by using FFT-1D, 2.708618 dB by using FFT-2D, and 3.5184181 dB by using numerical method. It shows that the transformation by using FFT-2D yields the most efficient and accurate results. When conducting the measurement of microstrip array 8-elemen antenna, the best results obtained with the method of FFT-2D algorithm.
The results of transformation in the antenna measurement without probe compensation yield error deviation of 3.28886 dB, computation time of 0.365671 second, and Axial Ratio value of 38.8865 dB. Meanwhile, by using probe compensation, it is yielded error deviation of 3.035867 dB, computation time of 0.485675 second, and Axial Ratio value of 40.3505 dB. Probe compensation factor successfully suppressed deviation errors especially in the areas of antenna sidelobe radiation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T30541
UI - Tesis Open  Universitas Indonesia Library
cover
Chandra Diwyadjati
Depok: Fakultas Teknik Universitas Indonesia, 1993
S35960
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1992
S36693
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam skripsi ini akan dibahas secara singkat mengenai fungsi alih kontinyu maupun diskrit dari tangki gandeng orde dua. Kemudian diturunkan algoritma pengendalian dari rumus Recursive Least Square (RLS) dan pengendali penempatan kutub. Algoritma tersebut diimplementasikan dengan perangkat lunak BORLAND DELPHI pada komputer pribadi untuk mengendalikan tinggi cairan pada tangki gandeng secara real-lime. Kemudian dibahas pula mengenai perangkat kenas antar-muka dari komputer pribadi ke tangki gandeng tersebut. Akhirnya diambil kesimpulan mengenai unjuk kerja sistem ini serta dibandingkan dengan pengendah PI."
Fakultas Teknik Universitas Indonesia, 1997
S38734
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kusno
Jember: FMIPA, Universitas Jember, 2004
516 KUS g
Buku Teks SO  Universitas Indonesia Library
cover
Putu Prama Widhiasmara
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37727
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fina Supegina
"Jacketed Stirred Tank Heater adalah sebuah tangki yang diselubungi oleh suatu ruangan pemanas yang disebut jaket, jaket ini berfungsi sebagai ruangan untuk menyalurkan bahan pemanas untuk memanaskan cairan yang terdapat di dalam tangki. Sistem Jacketed stirred tank heater ini terdiri dari bagian tangki dan bagian jaket yang mengelilingi tangki tersebut.
Penggunaan jacket adalah untuk menjaga sirkulasi kalor merata di sekeliling tangki dan mengurangi transfer kalor dari dalam tangki langsung ke lingkungan, karena temperatur di dalam jacket dijaga berada di atas temperatur cairan di dalam tangki, sehingga cairan di dalam tangki akan menyerap kalor dari jacket dan bukan sebaliknya. Hal inilah yang membuat penggunaan jacket pada Stirred Tank Heater dapat mempercepat proses pemanasan cairan di dalam tangki.
Model sistem Jacketed Stirred Tank Heater diperoleh dengan menggunakan kesetimbangan massa dan energi. Model matematik sistem ini merupakan persamaan yang memiliki sifat nonlinier. Proses linierisasi perlu dilakukan untuk mendapatkan persamaan-persamaan yang bersifat linier. Sistem Jacketed Stirred Tank Heater merupakan sistem Multi Input Multi Output (MIMO), yang terdiri dari dua varabel input dan dua variabel output.
Tujuan penelitian ini adalah merancang sistem kendali Proportional Integral (PI) dan sistem kendali fuzzy untuk mengatur sistem jacketed stirred tank heater sehingga mendapatkan temperatur output sesuai dengan yang diinginkan. Pengendalian sistem disimulasikan dengan menggunakan perangkat lunak MATLAB versi 7.1 dan kemudian membandingkan hasil pengendalian yang diperoleh dengan kedua jenis pengendali tersebut.

Jacketed Stirred Tank Heater is a tank that covered by heater room which is called Jacket, this jacket have a function as room to transported heater materials and heating the fluids inside the tank. This Jacketed stirred tank heater system consist of tank & jacket part that surrounding the tank.
This jacket usage is to maintain the steam circulation flatten in whole tank and reduce heat transformation from inside tank to environment directly, because the temperature inside jacket maintained in level above the fluid temperature inside, so that the fluid inside tank would absorb heat from the jacket and not the contrary. This is the point which jacket usage on Stirred Tank Heater could speed up the heating process inside the tank.
Jacketed Stirred Tank Heater system models is obtained by use mass & energy balancing. This maths model system is a nonlinier equation. Linierisation process need to be done to get the linier equations. Jacketed Stirred Tank Heater system is a Multi Input Multi Output (MIMO) system, that consist of two input and two output variable.
This research objective is to design Proportional Integral (PI) and fuzzy control system to controlled jacketed stirred tank heater system, so we could get the output temperature that appropriate with the requirement. Controlling system is simulated by use MATLAB 7.1 version program and compared with the result from those two controlling system above."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T25054
UI - Tesis Open  Universitas Indonesia Library
cover
Soewardi
Jakarta: Gramedia, 1984
516 Soe m
Buku Teks  Universitas Indonesia Library
cover
Rich, Barnett
Jakarta: Erlangga, 2004
516 RIC s
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>