Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27270 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1994
S36314
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1991
S35396
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdzan
"Floating Production Unit (FPU) Jangkrik mengolah gas dari Lapangan Kompleks Jangkrik dan potensi lapangan baru lain di sekitarnya. Evaluasi debottlenecking diperlukan sebagai upaya untuk peningkatan produksi, disertai kompleksitas tekanan inlet yang semakin rendah, dan tambahan dari sumber lapangan lain. Sehingga perlu dilakukan beberapa modifikasi pada unit pengolahan FPU, salah satunya MEG Regenerasi Unit (MRU). MEG dalam jumlah yang lebih besar harus diinjeksikan ke sumur bawah laut dan unit pengontrol titik embun untuk menekan pembentukan hidrat. Hal ini mengharuskan MRU untuk lebih banyak meregenerasi MEG yang ramping dari MEG yang kaya. Untuk mencapainya diperlukan nilai tukar panas yang lebih tinggi pada Reclaimer Loop Heaters. Persyaratan ini dapat dipenuhi dengan meningkatkan suhu atau laju aliran sumber panas yang berasal dari air panas. Unit Pemulihan Panas Limbah (Weast Hate Recovery Unit/WHRU) dan Sistem Air Panas, masing-masing bertanggung jawab memproduksi dan mendistribusikan air. Studi ini menyajikan evaluasi WHRU dan Sistem Air Panas untuk mengetahui kemampuannya dalam menyediakan suhu/debit air panas yang lebih tinggi ke Reclaimer Loop Heaters. Model matematika digunakan untuk menghitung kemampuan WHRU dalam menyediakannya pada suhu dan debit yang diinginkan. Beberapa permasalahan mekanis terkait keselamatan akan dipertimbangkan sehubungan dengan risiko penguapan, yang dapat terjadi bila suhu air panas dinaikkan mendekati atau melebihi suhu penguapannya pada tekanan operasi. Kemudian, Sistem Air Panas dievaluasi kemampuannya untuk mengalirkan suhu/debit air panas yang lebih tinggi.

The Jangkrik Floating Production Unit (FPU) processes gas from the Jangkrik Complex Field and other potential new fields in the vicinity. Evaluation of debottlenecking is needed as an effort to increase production, accompanied by the complexity of lower inlet pressure, and additional sources from other fields. So several modifications need to be made to the FPU processing unit, one of which is the MEG Regeneration Unit (MRU). Larger amounts of MEG should be injected into subsea wells and dew point control units to suppress hydrate formation. This requires the MRU to regenerate more lean MEG from rich MEG. To achieve this, a higher heat exchange rate is required in the Reclaimer Loop Heaters. This requirement can be met by increasing the temperature or flow rate of the heat source from the hot water.

The Waste Heat Recovery Unit (WHRU) and the Hot Water System are each responsible for producing and distributing water. This study presents an evaluation of the WHRU and Hot Water System to determine its ability to provide higher hot water temperature/discharge to the Reclaimer Loop Heaters. Mathematical models are used to calculate WHRU's ability to provide it at the desired temperature and discharge. Several safety-related mechanical issues will be considered in connection with the risk of evaporation, which can occur when the temperature of hot water is raised to near or above its evaporation temperature at operating pressure. Then, the Hot Water System is evaluated for its ability to deliver a higher temperature/hot water flow."

Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Boyen, John L.,
New York: Wiley, 1980
621.402 BOY t (1)
Buku Teks  Universitas Indonesia Library
cover
Trisno Anggoro
"Tingginya konsumsi energi dari sistem tata udara di rumah sakit, khususnya ruang operasi, disebabkan adanya persyaratan khusus yang harus dipenuhi untuk memastikan kondisi lingkungan di dalam ruang operasi yang steril serta bersih bagi staf dan pasien. Oleh karena itu, perlu adanya langkah konservasi energi di bangunan rumah sakit dengan menerapkan metode dan peralatan yang dapat menurunkan konsumsi energi tanpa mengorbankan kenyamanan sekaligus meningkatkan kualitas udara yang bersih dan steril. Integrasi heat pipe dalam suatu sistem tata udara merupakan salah satu contoh aplikasi peningkatan efisiensi energi. Studi eksperimental dilakukan untuk menginvestigasi kinerja termal dari heat pipe sebagai alat penukar kalor (heat exchanger) atau yang umum disebut dengan heat pipe heat exchanger (HPHE).
Pada penelitian ini HPHE dirancang dan dibuat untuk me-recovery kalor di dalam udara yang keluar dari simulator ruangan. HPHE terdiri dari heat pipe jenis tubular dengan fluida kerja air yang disusun staggered hingga sebanyak 6 baris dengan ukuran menyesuaikan dimensi ducting (lebar 470 mm, tinggi 300 mm, tebal 20 mm) dan ditambahkan fins di sepanjang heat pipe tersebut. Dimensi heat pipe yang digunakan memiliki panjang 700 mm, diameter luar 13 mm, dan 30 fins terpasang di masing-masing heat pipe. Terdapat beberapa parameter yang mempengaruhi kinerja HPHE.
Serangkaian eksperimen dilakukan untuk mengetahui pengaruh dari temperatur inlet udara di dalam ducting (30°C, 35°C, 40°C, 45°C), jumlah baris heat pipe (2 baris, 4 baris, 6 baris), dan kecepatan udara masuk (1 m/s, 1.5 m/s, 2 m/s). Hasilnya menunjukkan bahwa efektivitas HPHE mengalami peningkatan seiring dengan kenaikan temperatur inlet udara. Efektivitas terbesar diperoleh ketika menggunakan 6 baris heat pipe dengan kecepatan aliran udara masuk 1 m/s dan temperatur inlet udara 45°C. Jika ruang operasi rumah sakit beroperasi selama 8 jam/hari dan 365 hari/tahun, maka penurunan konsumsi energi pada sistem tata udara rumah sakit, khususnya ruang operasi, dapat diketahui dari prediksi besarnya heat recovery yang mencapai 4.1 GJ/tahun.

The high-energy consumption of hospitals HVAC systems, particularly the operating room, due to the specific requirements that must be met to ensure the environmental conditions in the operating room are healthy, convenient, and safe for staff and patients. Therefore, energy conservation efforts are needed in the hospital by applying the method and device that can reduce electricity consumption without sacrificing comfort while improving air quality is clean and sterile. The use of heat pipes in an HVAC system is one example of the application of energyefficiency improvements. Experimental studies conducted to investigate the thermal performance of the heat pipe as a heat exchanger or commonly named a heat pipe heat exchanger (HPHE).
In this study, HPHE is designed to recover the heat of exhaust air from a room simulator. HPHE consists of a tubular heat pipe with water as a working fluid that is arranged staggered by up to six rows with sizes to fit ducting dimensions (width: 470 mm, height: 300 mm, thickness: 20 mm) and added fins along the heat pipe. The tubular heat pipe has a length of 700 mm, an outer diameter of 13 mm, and 30 fins mounted on each heat pipe. Several parameters affect performance HPHE.
A series of experiments was conducted to determine the effect of the inlet air temperature in the ducting (30°C, 35°C, 40°C, 45°C). Moreover, the influence of the number of heat pipe rows (two rows, four rows, six rows) and velocity air (1 m/s, 1.5 m/s, 2m/s) was also investigated. The results show that the effectiveness of HPHE increase in line with the rise in inlet air temperature. The highest effectiveness was obtained when using 6-row heat pipes with the inlet air velocity of 1 m/s and the inlet air temperature of 45°C. The reduction of energy consumption in HVAC system can be seen from the prediction annual heat recovery with 8 h/day and 365 days/year will be 4.1 GJ/yr.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45937
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1996
S36582
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugeng Triyanto
"ABSTRAK
Salah satu program penghematan energi adalah pemanfaatan sumber energi secara e_[)?3.s'ien dengan menekan kerugian energi dan memargfaatkan kembali panas Iebih. Panos lebih pada .sistem pendingin konvensional di sisi kondensar cufwp besar dan tidak dimanfaatkan. Pans tersebut dilepaskun Ina media pendingin re_/Hgeran, yaitu melalui air arau udara.
Dengan hen! recovery condenser dan beberapa alat pelanglmp laimgya, _nada sistem mesin pendingin, didapat siszem yang lebih ejfekzzlf dan e_[}?lsien. Sistem ini mampu menank kembali panes Iebzh pada kondenser dan dapat dimanfaatlam :mink proses pemanasan adam alan air.
Heat recovery condenser yang digunakan adalah kondensor berpandingin air; sehingga panas yang dilepaskan oleh rafrigeran disarap oleh aliran massa air. Sehingga terjadi parpindahan energi panas dari refrigeran kepada air.
Skripsi ini menganalisa pemanfaatan heal recovery condenser :mink prose: pemanasan pada sistem pengkondisian udara dan pemanasan air. Analisa yang dilakulran bertujuan unruk mengezahui penghemaran energi dan Iwnnzmsi bahan baimr pada siftem. Selanjutnya melalmkan perbandlngan antara Siszem perzgkondisian udara dan pernerruhan air hangat pada kebumhan yang sama antara mesa):
pendingin dengan heat recovery oondenver dan mesin pendingin yang konvensional (tidal: memanfaatkan panas Iebih pada kondensor).

"
Lengkap +
1996
S36563
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Syahugi
"Proses throttling merupakan proses dimana entalpi tetap. Dalam proses ini, fliuda mengalami ekspansi dari daerah tekanan tinggi kedaerah bertekanan rendah sehingga terjadi penurunan temperatur uap jenuhnya. Selain itu, kerja yang dilakukan tidak ada, energi kinetik dan perpindahan kalor melalui lubang katup throttling itu sangat kecil sehingga dapat diabaikan.
Penelitian ini bertujuan untuk melakukan pemanfaatan energi panas yang terbuang. Misalnya, proses throttling dapat diaplikasikan terintegrasi dalam suatu sistem pembangkit yang pada umumnya terletak di daerah laut untuk memanfaatkan energi yang tersimpan dalam air laut sebagai air pendingin kondensor. Panas air buangan kondensor yang dibuang kelaut kembali dengan diterapkan proses throttling dapat memanfaatkan energi tersebut. Air dan uap dingin yang dihasilkan dari proses ini, dapat dimanfaatkan untuk mendinginkan kondensor guna meningkatkan kevakuman kondensor dibanding air laut.
Berdasarkan simulasi didapatkan peningkatan efisiensi pembangkit yang cukup signifikan yaitu sekitar 4%. Bahkan bukan hanya itu, keuntungan lain yang dapat dihasilkan adalah dapat diproduksinya air sulingan sebesar 117 ton/jam melebihi kebutuhan siklus uap PLTU yang hanya 7 ton/jam yang dibutuhkan dalam siklus uap PLTU.
Penelitian ini diujikan dengan membuat alat throttling process dan mengalirkan air bertekanan dan memiliki temperatur tinggi melewati katup ekspansi kedalam ruang vakum. Hasil yang diamati yaitu terjadinya penurunan temperatur jenuh air tersebut sesuai kevakuman ruang dan air sulingan yang diperoleh dengan mengkondensasinya menggunakan evaporator AC.

A throttling process is defined as a process in which there is no change in enthalpy. In these process, it is occurs expansion that cause a significant pressure drop and it is often accompanied saturated temperature in the fluid. There is no work is done, mass transfer and kinetic energy through out are neglectable.
In these simulation, the goal is to heat recovery. For example, the integrated system of power plant which is located at the sea. It is used potential energy in sea water to cooling the condensor. There is possible to heat recovery on the outlet heat of condensor in the throttling process which is created cooled vapor and water. The cooled water is used to replace sea water to cooling the condensor. With the result, condensor vacuums is increase and then its cause significant efficience increase about 4%. Eventhough, another gained profit is 117 ton/hour destilation water whereas it is exeed necessary for the PLTU vapor cycle about 7 ton/hour.
The goal of these research is making the throttling process devices and conduct on several temperature variation, water flow, and pressure throughout expansion valve. It is concerned occurs saturated temperature decrease as a room vacuums pressure. In addition, mass flow of saturated vapor is condensated by evaporator Air conditioner ( AC )."
Lengkap +
2008
S38223
UI - Skripsi Open  Universitas Indonesia Library
cover
Sukandar
"Tesis ini meneliti tentang kegagalan yang terjadi di sistem boiler feed water (BFW) di sebuah industri petrokimia. Kegagalan terjadi akibat adanya penipisan lokal pada ujung saluran injektor inhibitor dari pipa BFW, yang menyebabkan pipa mengalami kebocoran.
Untuk mengetahui penyebab kegagalan, dilakukan pengujian-pengujian menurut prosedur umum analisis kegagalan, yang mencakup pengujian-pengujian kekerasan, komposisi kimia, fraktografi/metalografi, produk korosi, polarisasi, efek pH, dan simulasi aliran.
Hasil pengujian menunjukkan bahwa kekerasan, komposisi kimia, dan struktur mikro pipa sesuai dengan spesifikasi material yang digunakan (ASTM A 106 grade B). Hasil pengujian produk korosi menunjukkan bahwa permukaan pipa terkorosi karena produk korosi mengandung elemen-elemen yang korosif. Pengujian polarisasi dan efek pH membuktikan bahwa laju korosi menurun dengan penambahan inhibitor dan peningkatan pH pada BFW. Pengujian simulasi menunjukkan bahwa terjadi turbulen pada aliran yang melewati nozzle check valve, tetapi pada ujung saluran injektor inhibitor tampak adanya daerah depresi dengan arah terbalik.
Berdasarkan hasil pengujian-pengujian tersebut dapat disimpulkan bahwa karena lokasi ujung injektor yang terletak di daerah depresi aliran, terbentuk caustic sebagai akibat reaksi antara inhibitor (Sodium Tripolyphosphatel Na3PO4) dengan air (BFW). Caustic menyebabkan ujung saluran injektor menjadi getas (embritllement) sehingga dengan aliran air yang rendah saja sudab dapat melepas lapisan caustic di ujung saluran injektor.
Untuk menghindari terjadinya caustic pada ujung saluran injektor inhibitor, maka posisinya disarankan untuk dijauhkan dengan jarak minimum 4 kali diameter luar pipa BFW, yaitu 1300 mm dari sumbu check valve. Dari simulasi aliran untuk jarak tersebut bebas dari daerah depresi aliran dan inhibitor langsung terbawa dan larut (diluted dengan BFW yang mengalir), dengan posisi pipa injektor tegak (90°).

The thesis is to investigate the failure happened in a boiler feed water (BFW) system of a petrochemical industry. The failure happened as cause of local thinning at the vicinity of inhibitor injector of BFW pipe, which cause the pipe leaked.
To find out the causes of the failure, some tests have been carried out based on the general procedure of failure analysis, which consist of hardness testing, chemical composition, fractography / metallographic, corrosion products, polarization, pH effects, and flow simulation.
Hardness Testing, chemical composition and micro structure show that the pipe material used are in accordance with the standard specification (ASTNE A 106 grade B). The test result of corrosion products show that the pipe surface corroded because the corrosion products contain corrosive elements. Tests of polarization and pH effects proved that the corrosion rate decrease by adding inhibitor and increase pH value. Test of flow simulation show that turbulence-created after the flow passed the nozzle check valve, but at the vicinity of inhibitor injector seem to be a depression area with a reversed flow.
Based on these tesis, it is concluded that the inhibitor injector located at the depression area, which created caustic as the chemist reaction between inhibitor (Sodium Tripolyphosphatel Na3PO4) and water (BFW). The caustic cause the vicinity of inhibitor injector become brittle, then only with low velocity of flow, the caustic layer can be removed.
Avoiding caustic happen at the vicinity of inhibitor injector, it is proposed that the inhibitor injector is located at least 4 times outside diameter of BFW pipe, i.e. 1300 mm, from the check valve axis. Results of flow simulation of some injector designs at the distance of 1300 mm, show that the injector is free from depression area and the inhibitor is diluted directly with flowing BFW, with the injector is vertical to the BFW pipe (90°)."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8525
UI - Tesis Membership  Universitas Indonesia Library
cover
Marjo
"Penelitian yang dilakukan untuk tugas akhir ini menggunakan miniatur Pembangkit Listrik Tenaga Uap (PLTU) ini diproduksi oleh SNM (Shin Nippon Machinery) dengan TIPE 100-SCR. PLTU ini mampu menghasilkan daya listrik sebesar 450 Watt dengan kapasitas uap maksimum 130 kg/jam. Penelitian ini dilakukan bersama dengan Wawan Mardiyanto dengan masing¬masing menganalisa karakteristik PLTU pada titik pengaturan temperatur superheater yang ditentukan yaitu pada 205oC dan 215°C. Tujuan penulisan tugas akhir ini adalah untuk mengetahui karakteristik dan performance PLTU 450 Watt dengan kondisi pengaturan temperatur superheater 205°C. Pengujian dilakukan dengan cara mengoperasikan PLTU 450 pada pengaturan temperature superheater 205°C dengan variasi pembebanan 100 Watt, 200 Watt, 300 Watt dan 450 Watt.
Dari data hasil pengujian yang diperoleh kemudian di plot pada diagram h-s, T-s dan p-h untuk mengetahui karakteristik PLTU. Setelah dilakukan perhitungan pada beban puncak (450 W), diperoleh effisiensi thermal yang kecil yaitu sebesar 3,88%. Kenaikan temperatur pada superheater tidak sebanding dengan kenaikan effisiensi thermal system. Hal ini dapat dilihat pada diagram h-s dan T-s dan p-h dimana terjadi losses pada saat uap dialirkan dari boiler menuju superheater sebesar 0,4 kJ/kg dan dari superheater menuju turbin sebesar 78 kJ/kg.

The research for this thesis uses miniature Steam Power (power plant) was produced by the SNM (Shin Nippon Machiner y) with TYPE 100-SCR. This power plant capable of producing electrical power of 450 Watts with maximum steam capacity of 130 kg / hour. This research was conducted jointl y with Henry Mardiyanto to analyze the characteristi cs of each plant at the point of superheater temperatur e setting thatis prescribed at 205°C and 215°C. The purpose of this thesis is to investi gate the characteristi cs and performance of 450 Watt power plant with superheater temperature setting conditi ons 205°C. Testi ng is done by operati ng the power plant superheater 450 at 205oC temperature settings with variations of loading 100 Watt, 200 Watt, 300 Watt and 450 Watt.
From the test result data obtained later in the plot on the diagram hs, Ts and ph to characterize power plant. After doing the calculati ons at peakload (450 W), obtained by a small thermal efficiency that is equal to 3.88%. The increase in temperature at the superheater is not proporti onal to the increase in thermal efficiency system. This can be seen in the hs diagram and Ts and ph where losses occur at steam drained from the boiler to the superheater by 0.4 kJ /kg and from the superheater to the turbine by 78 kJ / kg.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2011
S770
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>