Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 60909 dokumen yang sesuai dengan query
cover
Paulus Nurdiatmoko
"Fungsi utama kondensor uap pada suatu instalasi pembangkit tenaga uap adalah untuk mengkondensasikan uap buangan dari turbin dan dengan demikian rnemulihkan air-umpan berkualitas-tinggi untuk dipakai Iagi dalam siklus. Jika air pendingin yang bersirkulasi cukup rendah, akan menimbulkan tekanan balik yang rendah untuk membuang uap keluar dari turbin. Hal ini akan menurunkan tekanan akhir yang keluar dari turbin sehingga daya turbin akan menjadi lebih besar dibandingkan dengan instalasi yang tidak meggunakan kondensor. Atau dengan daya turbin yang tetap, efisiensi instalsi akan meningkat.
Kondensor uap yang merupakan alat penukar kalor berpendingin air akan sangat dipengaruhi oleh kondisi air pendingin atau sirkulasi, baik suhu atau kebersihannya.
Pada pembuatan tugas akhir ini akan diperhitungkan pengaruh dari variasi suhu air pendingin terhadap unjuk kerja kondensor. Perhitungan diambil berdasarkan data-data yang didapat dari PLTU Muara Karang unit 3.
Hasil akhir dapat dilihat bahwa dengan sernakin tingginya suhu air pendingin, maka akan meningkatkan tekanan lcondensor, suhu saturasi kondensor, beda suhu rata-rata, koefisien perpindahan kalor total dan beban kalor konclensor. Dan dari sini akan mengakibatkan makin menurunnya efisiensi termal siklus."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37673
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khanza Aulia Prijonggo
"Latar Belakang: Gipsum tipe III banyak digunakan pada bidang kedokteran gigi dalam pembuatan model studi dan model kerja yang hanya digunakan sekali dan menjadi limbah. Gipsum memiliki sifat reversibel sehingga dapat dilakukan daur ulang gipsum melalui proses dehidrasi untuk mengubah limbah menjadi menjadi gipsum daur ulang berupa pengganti bubuk pabrikan. Hingga saat ini, belum terdapat penelitian mengenai pengaruh variasi suhu dehidrasi terhadap waktu pengerasan pada gipsum tipe III daur ulang. Tujuan: Menganalisis pengaruh variasi suhu dehidrasi terhadap waktu pengerasan pada gipsum tipe III daur ulang. Metode: Dua belas spesimen gipsum tipe III dengan dimensi 5x5x5 cm3 dibagi menjadi enam kelompok uji gipsum daur ulang spesimen berdasarkan variasi suhu dehidrasi dengan rentang 110-160˚C menggunakan laju pemanasan 10˚C selama 60 menit dengan masing-masing kelompok empat spesimen. Perhitungan durasi waktu pengerasan dilakukan dengan menggunakan uji Vicat sesuai ISO 6873:1983 dan ADA No. 25. Analisis data yang digunakan menggunakan uji One way ANOVA dengan uji post hoc Bonferroni. Hasil: Uji waktu pengerasan pada gipsum Pro Solid Super Yellow tipe III, terdapat perbedaan waktu pengerasan antar kelompok. Kelompok dengan suhu dehidrasi 110˚C dan 120˚C tidak terjadi pengerasan sehingga tidak dapat dilakukan uji data. Pada kelompok suhu dehidrasi 130˚C, 140˚C, 150˚C, dan 160˚C didapatkan nilai signifikansi sebesar 0,001 (p<0,05). Kesimpulan: Semakin tinggi suhu dehidrasi maka durasi waktu pengerasan menjadi lebih lama. Namun, pada kelompok dengan suhu dehidrasi 110˚C dan 120˚C tidak terjadi pengerasan selama waktu pengerasan.

Background: Type III gypsum are widely used in the field of dentistry in the manufacture of study models and working models that are only used once and become waste. Gypsum has reversible reaction properties so that gypsum recycling can be carried out through a dehydration process to convert waste into recycled gypsum in the form of a substitute for manufactured powder. Until now, there has been no research on the effect of dehydration temperature variations on the setting time of recycled type III gypsum. Objective: Analyzing the effect of dehydration temperature variation on setting time of recycled type III gypsum. Research Methods: Twelve type III gypsum specimens with dimensions of 5x5x5 cm3 were divided into six groups of recycled gypsum test specimens based on variations in dehydration temperature with a range of 110-160˚C used a heating rate of 10˚C for 60 minutes with each group of four specimens. The calculation of the setting time test was carried out using a Vicat needle according to ISO 6873: 1983 and ADA No. 25. Data analysis used the One way ANOVA test with Bonferroni post-hoc test. Results: Setting time test on Pro Solid Super Yellow type III gypsum, there is a difference in setting time between groups. The 110˚C and 120˚C dehydration temperature groups had no change so that the data test cannot be carried out. In the 130˚C, 140˚C, 150˚C, and 160˚C dehydration temperature groups, the significance value was 0.001 (p<0.05). Conclusion: The higher the dehydration temperature, the longer the setting time reaction. However, in the groups with dehydration temperatures of 110˚C and 120˚C, no change during the setting time. "
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Study on carrageenan extraction using filter press with variation ratio of seaweed and extraction medium (water), temperature of precipitation, potassium chloride concentration has been
conducted. Ratio of seaweed and water used were 1:20, 1:30 and 1:40 (w/v), temperature of precipitation were varied at 15 and 30°C, and potassium chloride concentration used were 1 and 1.5%. Parameters observed on the carrageenan were yield, viscosity, gel strength, moisture content, ash content, sulfate content and acid insoluble ash. Result showed that the best treatment was ratio seaweed : water = 1:20, temperature of precipitation at 30°C and potassium chloride
concentration of 1%, with quality of carrageenan i.e. gel strength 1897.14 (g/cm2), viscosity 145 (cPs), ash content 29.59%, acid insoluble ash 0.83%, sulfate content 18.36%, yield 31.77% and
moisture content 9.73%. The carrageenan quality has met with the standard established by Food Agriculture Organization (FAO), Food Chemical Codex (FCC) and European Economic Community (EEC)."
620 JPBK 6:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Andre Saputra
"Mangan dioksida (MnO2) merupakan salah satu bahan baku yang memiliki potensi untuk dijadikan katoda pada baterai ion lithium yang bersifat rechargeable. Mangan dioksida memiliki kapasitas penyimpanan mencapai 615 mAh/g. MnO2 dapat diperoleh dengan cara elektrolisis dari larutan mangan sulfat (MnSO4). Proses elektrolisis dilakukan dengan variasi arus yaitu 0,5 A dan 1 A, pH sebesar 1 dan 3, temperatur sebesar 70 °C, 80 °C, 90 °C dan 95 °C serta variasi waktu selama 3 jam, 5 jam, 7 jam dan 9 jam untuk mengetahui pengaruh arus, pH, temperatur dan waktu terhadap perolehan massa, kandungan kimia, struktur kimia serta morfologi MnO2 yang terbentuk. Dari hasil percobaan, perolehan massa MnO2 tertinggi didapatkan pada arus 1 A, pH 3, temperatur 90 °C dan waktu elektrolisis selama 9 jam yaitu sebesar 13,57 gram. Hasil penelitian menunjukkan bahwa dengan peningkatan temperatur dan bertambahnya waktu elektrolisis akan didapatkan endapan MnO2 yang semakin tinggi. Hasil dari proses elektrolisis kemudian dilakukan karakterisasi XRD, XRF dan SEM. Dari pengujian XRD diketahui bahwa senyawa yang terbentuk pada endapan hasil elektrolisis merupakan senyawa akhtenskite MnO2 (ε-MnO2) yang memiliki sistem kristal hexagonal. Hasil karakterisasi XRF diketahui bahwa endapan yang diperoleh dari proses elektrolisis memiliki kadar MnO sebesar 92,40 %. Dari hasil pengamatan SEM, diketahui bahwa produk MnO2 yang dihasilkan memiliki morfologi partikel yang membulat yang memiliki ukuran diameter dengan rentang 0,1-0,9 μm.

Manganese dioxide (MnO2) is a material that has the potential to be used as a cathode in rechargeable lithium-ion batteries. Manganese dioxide has a storage capacity of up to 615 mAh/g. MnO2 can be obtained by electrolysis of a solution of manganese sulfate (MnSO4). The electrolysis process was carried out with variations in currents of 0.5 A and 1 A, pH of 1 and 3, temperatures of 70 °C, 80 °C, 90 °C and 95 °C and time variations for 3 hours, 5 hours, 7 hours and 9 hours to determine the effect of current, pH, temperature and time on mass gain, chemical content, chemical structure and morphology of MnO2 formed. From the experimental results, the highest mass gain of MnO2 was obtained at a current of 1 A, pH 3, a temperature of 90 °C and an electrolysis time of 9 hours, which was 13.57 grams. The results showed that with increasing temperature and increasing electrolysis time, higher MnO2 precipitates were obtained. The results of the electrolysis process were then characterized by XRD, XRF and SEM. The XRD test shows that the compound formed in the electrolysis precipitate is an akhtenskite MnO2 (ε-MnO2) compound which has a hexagonal crystal system. The results of XRF characterization showed that the precipitate obtained from the electrolysis process had a MnO content of 92,40 %. The SEM image shows that the MnO2 sample has a spherical shape with particle diameters in the range 0,1-0,9 μm."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Purnomo
Depok: Fakultas Teknik Universitas Indonesia, 1994
S38580
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faradilla Maulina
"Operasional Reaktor Serba Guna (RSG) 30 MW di kawasan Puspitek, Serpong yang memungkinkan terjadinya pelepasan radionuklida yang akan mengkontaminasi sistem perairan, salah saatunya adalah Cesium-137. Biota laut mampu mengakumulasi zat radioaktif sehingga konsentrasinya pada tubuh biota menjadi berlipat dibandingkan konsentrasi zat radioaktif di lingkungan. Kontaminasi dapat terjadi melalui jalur internal (ingesti) maupun jalur eksternal (radiasi lingkungan). Didukung oleh hal tersebut maka dilakukan studi bioakumulasi 137Cs oleh ikan kerong-kerong (Therapon jarbua) dari perairan Teluk Jakarta melalui jalur air laut.
Penelitian ini bertujuan untuk mempelajari mekanisme bioakumulasi 137Cs dengan faktor pengaruh salinitas dan suhu air pada T. jarbua dengan menggunakan metode biokinetika kompartemen tunggal melalui tiga tahap percobaan yaitu, aklimatisasi, kontaminasi dan depurasi serta dilakukan pengukuran aktivitas 137Cs dengan spektrometer gamma HPGE. Hasil penelitian menunjukkan Nilai faktor biokonsentrasi (BCF) pada salinitas 26?; 29?; 32?; dan 35? berturut-turut adalah 2.22; 2.14; 1.56; dan 6.17 mL g-1, sedangkan nilai BCF pada suhu 28˚C; 31 ˚C;34 ˚C; dan 37 ˚C berturut-turut adalah sebesar 2.78; 3.25; 3.79; dan 3.51 mL g-1.

The 30MW-Serba Guna Reactors (RSG) in puspitek ,Serpong may allow the release of the radionuclides that would contaminate the water system, one of them, is Caesium-137. Marine organisms are capable of accumulating the radioactive substances, resulting a higher concentration of it inside their body in contrast to the environment. Contamination can occur through internal pathways (ingestion) or external pathway (radiation in the environment). Supported by these statement, the 137Cs bioaccumulation study was performed by observing Target Fish (Therapon jarbua) from the Jakarta Bay.
This research is intended to study the bioaccumulation's mechanism of 137Cs with the influence of salinity and water temperature on T. jarbua using a single-compartment biokinetic model by doing three experimental processes, namely acclimatization, contamination, and depuration. The activity of 137Cs was measured by High-purity Germanium (HPGE) gamma spectrometer. The results shows the values of bioconcentration factor (BCF) on T. jarbua at 26 ?; 29 ?; 32 ?; and 35 ? salinity, which are 2.22; 2.14; 1.56; and 6.17 mL g-1, respectively. On the other hand, the BCF values at 28°C; 31 °C; 34 ° C; and 37 ° C temperature are 2.78; 3.25; 3.79; and 3.51 mL g-1, respectively.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64449
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Surinati
"Kondisi Samudera Pasifik yang mempengaruhi perairan Indonesia merupakan hal penting dalam mengkaji perubahan iklim yang dipicu oleh proses terjadinya La Niña dan El Niño (fenomena ENSO/El Niño Southern Oscillation). Program MatLab digunakan untuk mengkorelasikan suhu subsurface (data 12 buoy TRITON) di Samudera Pasifik dengan perubahan suhu permukaan laut/SST 16 wilayah perairan Indonesia. Buoy 10 (8oN dan 137oE) konsisten berkorelasi signifikan (99%) dalam lag time sampai 5 bulan terhadap perubahan SST 11 dari 16 wilayah perairan Indonesia dengan kedalaman yang berbeda. Hal ini menunjukkan bahwa kejadian ENSO bisa diprediksi setidaknya 5 bulan sebelumnya.
Tidak adanya buoy yang berkorelasi signifikan dengan 5 wilayah lainnya terkait dengan arus dari Samudera Pasifik menuju Samudera Hindia yang melalui perairan Indonesia (arus lintas Indonesia/arlindo). Begitu pula dengan signifikansi buoy TRITON di Samudera Pasifik terhadap perubahan SST Selat Makassar dan Laut Maluku sebagai jalur utama arlindo serta perairan utara Pulau Papua yang terletak sekitar warm pool sebagai pintu masuknya. Puncak volume transport arlindo yang masuk dan keluar diperkirakan terjadi pada waktu yang berbeda dan dipengaruhi oleh adanya El Niño dan La Niña sehingga diduga terjadi penyimpanan massa air di perairan Indonesia.
Hasil penelitian menunjukkan bahwa sistem arus di kawasan barat Samudera Pasifik sangat erat kaitannya dengan arlindo. Oleh karena itu, dengan penelitian ini program pemantauan perairan Indonesia bisa lebih ditingkatkan agar mampu memprediksi adanya El Niño dan La Niña serta pengaruh lainnya lebih awal. Untuk pemasangan buoy selanjutnya perlu mempertimbangkan posisi dan kedalaman buoy sesuai yang bisa mewakili semua wilayah perairan Indonesia untuk pemantauan ENSO sebagai salah satu faktor yang mempengaruhi variabilitas iklim di Indonesia.

Affecting condition of the Pacific Ocean on Indonesia waters is important in assessing climate change that was triggered by the occurrence of La Niña and El Niño (ENSO phenomenon/El Niño Southern Oscillation). MatLab program is used to correlate subsurface temperature (12 TRITON buoys data) in the Pacific Ocean with sea surface temperature/SST anomaly in 16 regions of Indonesian waters. Buoy 10 (8oN and 137oE) consistently correlated significantly (99%) in the lag time up to 5 months to changes in SST 11 of 16 regions with different depths. This suggests that ENSO events can be predicted at least 5 months earlier. No buoy which correlated significantly with 5 other regions closely related to the current from the Pacific Ocean to the Indian Ocean through the Indonesian waters (Indonesian throughflow/ITF). Similarly, the significance of TRITON buoys in the Pacific Ocean to the SST anomaly in Makassar Strait and Molucca Sea as the main line ITF, and also in the north of Papua Island which lies about warm pool as its entrance. ITF peak volume transport in and out is expected to occur at different times and influenced by the El Niño and La Niña that is suspected storage of water mass in Indonesian waters. The results showed that the current system in the western Pacific Ocean was closely linked to ITF. Therefore, with this study Indonesian waters monitoring program could be improved to be able to predict the presence of El Niño and La Niña and other influences early. And for the next buoy installation need to consider the position and depth of buoy according to represent all Indonesian waters for monitoring ENSO as one of the factors influencing climate variability in Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T35524
UI - Tesis Membership  Universitas Indonesia Library
cover
Irwan Kustianto
"Pemantauan temperatur air sangat penting dalam memahami perubahan lingkungan. Untuk itu, dibutuhkan perangkat yang dapat mendeteksi temperatur secara realtime dengan tingkat sensitivitas yang tinggi. Pada penelitian ini, dilakukan karakterisasi terhadap fiber Bragg grating (FBG) sebagai sensor berbasis optik untuk mengukur temperatur dalam rentang yang lebar, yaitu  4  hingga 50 . Hasil eksperimen skala laboratorium dengan air tawar menunjukkan bahwa  terdapat hubungan yang linear antara perubahan panjang gelombang dengan sensitivitas rata-rata 0,0103 , dengan error repeatibility dari 0,96%.  Selanjutnya, untuk mengantisipasi aplikasi pengukuran temperatur air di laut dilakukan simulasi untuk kondisi kedalaman 2000 . Hasil simulasi menunjukkan bahwa semakin tinggi tekanan hidrostatik akan berdampak terhadap bertambahnya peningkatan perubahan panjang gelombang Bragg. Selain itu dilakukan juga integrasi sensor temperatur FBG ini ke dalam sistem Internet of Things (IoT). Perancangan dimulai dengan pengolahan data yang didapat dari sensor temperatur FBG melalui optical interrogator, pembuatan database dan mengirimkannya ke dalam web server, di samping juga pembuatan website IoT dashboard yang berisi data-data yang didapat dari sensor temperatur FBG agar dapat dibaca secara online dan realtime. Dari hasil pengukuran quality of service website tersebut didapatkan nilai pengukuran throughput sebesar  0.73942412 , packet loss 0%, dan delay sebesar 1.3 .

Monitoring water temperature is crucial in understanding environmental changes. For this purpose, a device capable of detecting temperature in real-time with high sensitivity is required. In this research, characterization of Fiber Bragg Grating (FBG) was conducted as an optical-based sensor to measure temperature over a wide range - from 4  to 50 . Laboratory-scale experiments with freshwater revealed a linear relationship between wavelength changes and an average sensitivity of 0.0103 , with a repeatability error of 0.96%. Furthermore, to anticipate the application of water temperature measurement in the sea, simulations were carried out for conditions at a depth of 2000 . The simulation results indicated that higher hydrostatic pressure impacts the increase in Bragg wavelength changes. In addition, integration of the FBG temperature sensor into the Internet of Things (IoT) system was also performed. The design began with processing data obtained from the FBG temperature sensor through an optical interrogator, creating a database, and sending it to a web server. This was complemented by the development of an IoT dashboard website displaying data from the FBG temperature sensor, accessible online and in real-time. The quality of Service measurements of this website showed a throughput value of 0.73942412 , 0% packet loss, and a delay of 1.3 "
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Early Radovan
"Penelitian ini menyimulasikan sistem pengendalian temperatur dan ketinggian air pada sistem pengendali MIMO, yang bekerja dengan cara mengendalikan debit air dingin dan air panas untuk menghasilkan temperatur dan ketinggian air yang diinginkan. Simulasi ini dilakukan dengan menggunakan pengendali Reinforcement Learning dengan algoritma Proximal Policy Optimization (PPO) pada Simulink MATLAB. Tujuan dari penelitian ini, sistem dapat menjaga temperatur campuran dan ketinggian air yang terukur agar tetap berada di daerah set point yang ditentukan. Hasil training pengendali PPO diuji dengan melakukan perubahan set point, baik penambahan nilai ataupun pengurangan nilai set point. Pada penelitian ini diasumsikan bahwa proses pencampuran temperatur terdistribusi secara sempurna dan tangki tidak menyerap kalor. Penelitian ini memiliki batasan dimana temperatur air dingin 25℃ dan air panas 90℃ serta ketinggian maksimum tangki sebesar 7,5 dm. Kemampuan agent PPO dilihat dari beberapa parameter seperti overshoot, settling time, rise time, dan error steady state sebagai data kualitatif. Berdasarkan hasil simulasi, secara keseluruhan agent PPO meiliki hasil settling time dan rise time yang berbanding lurus dengan banyaknya perubahan set point. Nilai error steady state tertinggi sebesar 0.98%, terjadi pada pengendalian ketinggian air. Sedangkan nilai overshoot tertinggi sebesar 1,02% dan terjadi pada pengendalian ketinggian air juga.

This research simulates water level and temperature control system on MIMO control system, which works by controlling the flow of cold water and hot water to produce the desired temperature and water level. This simulation is carried out using Reinforcement Learning with Proximal Policy Optimization algorithm on Simulink MATLAB. The purpose of this research, the system can maintain measured temperature of mixture and water level in order to remain in the set point area. The results training of the PPO controller set point, either adding or reducing the set point. In this study, it is assumed that the temperature mixing process is perfectly distributed and the tank does not absorb heat. This research has a limit where the temperature of cold water is 25 and hot water is 90, and the maximum height of the tank is 7.5 dm. The ability agent of the PPO can be seen from overshoot, settling time, rise time, and steady state error as qualitative data. Based on the result of simulation, overall the agent PPO has settling time and rise time that is directly proportional to the number of changes at set point. The highest value of steady state error is 0.98%, occurred in controlling water level. While the highest value of overshoot is 1.02% and occurs in controlling water level as well.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dito Tunjung Parahyta
"Proses Thermal Mixing adalah jenis dari proses pencampuran yang penting di berbagai industri, seperti industri pangan, pupuk, farmasi, material sampai petrochemical. Proses Thermal Mixing merupakan proses Multi input multi ouput (MIMO), karena bekerja dengan mengendalikan dua flow air panas dan air dingin untuk mengendalikan temperatur dan level campuran. Meskipun memiliki respon yang kurang baik untuk mengendalikan MIMO, namun PID masih banyak digunakan karena kesederhanaannya. Algoritma non konvensional yang lebih baik seperti fuzzy control memiliki kerumitan yang tinggi dibanding PID. Algoritma Adaptive Fuzzy PID Controller (AFPIDC) merupakan gabungan dari keduanya, memiliki basis PID yang cukup sederhana namun ditambahkan aspek Fuzzy untuk mempercepat pengendalian dengan cara mengubah konstanta PID secara real-time (on the fly). Algoritma AFPIDC ini diterapkan pada simulasi sistem pengendalian temperatur dan level air pada proses water Thermal Mixing dan dilakukan pada program MATLAB/SIMULINK di PC. Fuzzy yang digunakan memiliki dua input berupa error dan perubahan error, dan memiliki tiga output berupa perubahan nilai konstanta PID. Pengujian sistem dilakukan dengan simulasi perubahan setpoint dan gangguan berupa kebocoran flow. Dari hasil pengujian sistem, pengendali AFPIDC memiliki performa yang lebih baik dari PID dalam mengendalikan temperatur dan level pada sistem. Dalam pengendalian temperatur, didapatkan nilai settling time PID sebesar 830 detik, AFPIDC sebesar 328 detik dan untuk nilai overshoot PID 6,3% dan AFPIDC 0%. Untuk pengendalian level didapatkan settling time PID 3221 detik dan AFPIDC 235 detik dengan nilai overshoot PID 10,5% dan AFPIDC 0%. Dari pengujian sistem terhadap gangguan kebocoran, pengendali temperatur membutuhkan waktu untuk kembali stabil pada PID 780 detik, AFPIDC 250 detik. Sedangkan untuk pengendalian level untuk kembali stabil membutuhkan waktu PID 4510 detik, AFPIDC 225 detik.

The Thermal Mixing Process is a type of mixing process that is important in various industries, such as the food, fertilizer, pharmaceutical, material to petrochemical industries. The Thermal Mixing Process is a multiple-input multiple-output process (MIMO), because it works by controlling hot water and cold-water flows to control the temperature and level of the mixture. Although it has a poor response to control MIMO system, PID is still widely used because of its simplicity. There are some better control algorithm, such as fuzzy control, but have higher complexity than PID. The Adaptive Fuzzy PID Control (AFPIDC) algorithm is a combination of the two, has a simple PID basis with added Fuzzy aspects to speed up control by changing the PID constant in realtime. The AFPIDC algorithm is applied to the simulation of temperature and water level control systems in the process of water Thermal Mixing and is done on the MATLAB/SIMULINK program on a PC. The fuzzy algorithm uses two inputs in the form of errors and changes in errors and has three outputs in the form of changes in the value of the PID constant. System testing is done by simulating setpoint changes and disruption in the form of leakage flow. From the results of system testing, AFPIDC controllers have better performance than PID in controlling temperature and level in the system. In temperature control, the PID settling time is 830 seconds, AFPIDC is 328 seconds and the PID overshoot is 6,3% and AFPIDC is 0%. In level control, the settling time of PID is 3221 seconds while AFPIDC is 235 seconds with PID overshoot is 10,5% while AFPIDC 0%. From testing the system with leakage disturbance, the temperature controller needs time to regain stability at PID 780 seconds, AFPIDC 250 seconds. Meanwhile the level controlling stabilizes at PID 4510 seconds, and AFPIDC at 225 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>