Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6178 dokumen yang sesuai dengan query
cover
Gatot Eka Pramono
"Refrijeran chloroflourocarbon (CFC), hydrochloroflourocarbon (HCFC), dan hydroflourocarbon (HFC) merupakan refrijeran yang sering dipakai dalam mesin-mesin pendingin ataupun heat pump, namun ketiga jenis refrijeran tersebut ternyata mempunyai dampak buruk kepada lapisan ozon dan sebagai penyebab pemanasan global. Oleh karena itu penggunaan ketiga jenis refrijeran ini sudah mulai dibatasi dan suatu saat mungkin akan dihilangkan. Refrijeran hidrokarbon ternyata bisa dipakai untuk menggantikan ketiga jenis refrijeran diatas tanpa menimbulkan banyak masalah (retrofitting). Refrijeran R290 (propana) ternyata bisa dipakai untuk pengganti R22 secara langsung, tidak perlu ada perubahan yang berarti didalam sistem tersebut dengan jumlah refrijeran tinggal 40-50% dari jumlah refrijeran R22 dan lebih hemat energi sekitar 10-20% bila dibandingkan dengan R22. Meskipun mudah terbakar, refrijeran hidrokarbon ternyata aman digunakan asalkan kita mematuhi aturan-aturan yang berlaku dalam penanganan refrijeran ini. Refrijeran hidrokarbon merupakan bahan refrijeran masa depan yang aman bagi manusia, aman bagi lingkungan, dan hemat energi.

Chloroflourocarbon (CFC), hydrochloroflourocarbon (HCFC), and hydroflourocarbon (HFC) refrigerant is common relrigerant use in cooling machine or heat pump but they have a bad impact for the ozone layer and causing global warming on earth surface. Because of that bad impact, some of developed countries begin to limiting production this three kind of refrigerants and try to stop the production step by step. Hydrocarbon refrigerants can be use to replace that three kind of refrigerants above without generating many problem. R290 refrigerants (Propane) can be use to replace R22 without changing the component of the air conditioning system (retrofitting process) with the refrigerants charge only 40%-50% from R22 and saving energy about 10%-20%. Eventhough hydrocarbon highly Flammable, this kind of refrigerant is safe to use as long as we follow the rules for handling this kind of refrigerant. Hydrocarbon refrigerants have a good future because they are harmless to human being, harmless to the environment and saving energy."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S37457
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2004
S37488
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widya Mudita
"Refrigeran pada suatu unit mesin pendingin, dapat diumpamakan sebagai darah pada manusia. Jenis dan jumlah refrigeran yang diberikan pada suatu unit mesin pendingin akan berpengaruh pada kapasitas pendinginan yang akan dihasilkan oleh mesin pendingin tersebut.
Penggunaan refrigeran R22 sudah begitu luas penerapannya pada mesin pendingin berkapasitas rendah contohnya pada air conditioner ruangan tipe jendela atau window dan tipe split atau terpisah antara indoor dan out door.
Seiring dengan kesadaran manusia akan kondisi lingkungan maka pada jenis-jenis refrigeran yang merusak lingkungan khususnya ozon, mulai dicari alternartif penggantinya. Salah satu refrigeran yang dapat menggantikan refrigeran R22 adalah refrigeran hidrokarbon.
Untuk mengetahui seberapa besar kernampuan dari refrigeran hidrokarbon ini untuk menggantikan refrigeran R22, maka kami melakukan pengujian parameter psycrometric dengan pada air conditioner tipe split yang berkapasitas 1.5 kW.

The Refrigerant in the Refrigeration Machine that its can describe like a blood in human body. The kind and quantity of reirigerant which its give in refrigeration machine can influence of the cooling capacity which its can produce by refrigeration machine.
The refrigerant R22 have been using in low capacity of refrigeration machine on longtime, for example in the room air conditioner window type and split type.
When the human starting to care with good environment condition, they know that refrigerant R22 have not good influence at the ozon, because they can damage on the ozon surface and area. So, we looking for alternative change of refrigerant R22 to the other. And we find refrigerant hydrocarbon have same properties that its can change refrigerant R22.
We necessary to test refrigerant hydrocarbon with the psycrometric test room that to know the cooling capacity of these refrigerant to change refrigerant R22.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37255
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triara Anggraini
"Lapangan TA adalah salah satu lapangan yang beroperasi di bawah PT. Chevron Pacific Indonesia yang telah ditindaklanjuti dengan teknologi baru dalam upaya peningkatan produksi. Berdasarkan data log, Formasi Menggala merupakan perselingan batupasir dan batulempung. Dari penampang seismik diinterpretasikan bahwa terdapat struktur geologi berupa sesar mendatar dan sesar naik. Data Log dan Seismik 3D dapat diolah untuk mendapatkan model bawah permukaan yang lebih baik. Tahapan pengolahan data dimulai dengan korelasi sumur, lalu dilakukan well-seismic tie untuk meletakkan horizon seismik (skala waktu) pada posisi kedalaman sebenarnya yang akan digunakan pada proses picking horizon. Setelah itu dilakukan analisa seismik atribut amplitudo rms, amplitudo palung maksimum, dan atribut kuat refleksi. Dari hasil pengolahan data, diduga terdapat tiga area potensi pengembangan (lead) pada Lapangan TA. Dari ketiganya, lead 1 diduga sebagai daerah yang paling berpotensi berdasarkan peta struktur waktu terdapat closure, peta ketebalan formasi, dan peta atribut dimana zona interest berada di antara 10-20 ms. Pada daerah ini batuan induknya merupakan Kelompok Pematang yaitu Formasi Brown Shale dan tipe kerogen 1 atau 2, reservoar berada pada Formasi Menggala, jebakan berupa struktur lipatan, migrasi primer, dengan batuan tudung Formasi Bangko.

TA field is one of PT. Chevron Pacific Indonesia?s operating areas that has been obtained new technologies due to increase production. Based on Log Data, Menggala Formation was formed by combination of sandstone and shale. Interpretation from seismic section, there is a geological structures such as normal fault and reverse. Well Log Data and 3D Seismic Data can be processed to get more accurate subsurface model. Stage of processing data started with log correlation and then well-seismic tie for interpreted seismic horizon on time domain that will be used for picking horizon. After that running rms amplitude seismic attribute, maximum trough attribute, and reflection strength attribute. From the results of data processing, supposedly there are three potential areas of development in the TA field. Of the three, lead one suspected as the most potential area (lead) are based on the structure of time there is closure, formation thickness maps, and attributes maps in which the interest zone between 10-20 ms. In this area, the source rock is a group of Pematang is Brown Shale Formation and type of kerogen is 1 or 2, reservoir on this field is Menggala Formation, trapped in a fold structure, primary migration, with Bangko Formation as the seal."
Depok: Universitas Indonesia, 2011
S1866
UI - Skripsi Open  Universitas Indonesia Library
cover
Putri Irawani
"Banyak penelitian telah dilakukan untuk menemukan bahan bakar alternatif atau bahan bakar pengganti minyak bumi. Konversi gas alam menjadi hidrokarbon setara fraksi tengah minyak bumi (bensin, kerosin, solar) adalah peluang yang baik untuk mengejar kebutuhan bahan bakar cair di masa depan yang meningkat dengan pesat. Metanol merupakan sumber bahan yang dapat diperbaharui, memiliki bilangan oktan serta daya guna karakteristik yang tinggi, dan relatif dapat dimodifikasi dengan bantuan katalis asam untuk menghasilkan bensin. Konversi metanol menjadi hidrokarbon cair pada penelitian ini menggunakan katalis y-Al2O3-TiO2 dan zeolit H-ZSM-5 dengan beberapa variasi perbandingan berat katalis masing-masing katalis 1-3 gram. Katalis y-Al2O3-TiO2 disintesis dari gel boehmite yang dihasilkan dari penambahan larutan Al(NO3)3 dengan larutan NH4OH dan dilakukan proses aging pada suhu 40°C dan dilanjutkan pada suhu 80 oC masing-masing selama 96 jam. Zeolit ZSM-5 disintesis dari larutan hidrogel dengan komposisi mol 28 NaO : Al2O3 : 100 SiO2 : 4475 H2O : 36 R : 25 H2SO4 dengan R adalah zat pengarah TPABr. Sintesis dilakukan secara hidrotermal pada suhu 180°C selama 240 jam dan dilanjutkan dengan pengubahan Na-ZSM-5 menjadi H-ZSM-5. Katalis dianalisa dengan difraksi sinar X, spektrofotometri FT-IR, dan analisa luas permukaan dengan metode BET. Reaksi konversi metanol menjadi hidrokarbon cair dilakukan pada variasi suhu reaksi 200°, 225°, 250°, 275°, 300°, dan 350°C. Hasil analisa kromatografi gas menunjukkan produk yang dihasilkan adalah sikloheksan dan xilene. Suhu optimum reaksi konversi adalah 250°C dan %konversi untuk 1 gram y-Al2O3-TiO2 dan 3 gram zeolit H-ZSM-5 sebesar 44,15%, 2 gram y-Al2O3-TiO2 dan 2 gram zeolit H-ZSM-5 sebesar 25,86%, 3 gram y-Al2O3-TiO2 dan 1 gram zeolit H-ZSM-5 sebesar 25,52%, dan 3 gram y-Al2O3-TiO2 dan 3 gram zeolit H-ZSM-5 sebesar 26,09%. Kata kunci : y-Al2O3-TiO2, zeolit ZSM-5, konversi metanol, hidrokarbon cair."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gusmansyah
"Konversi gas bumi menjadi hidrokarbon cair setara fraksi tengah minyak
bumi (bensin, solar, dan kerasin) merupakan alternatif menarik untuk
memenuhi kebutuhan produk bahan bakar. Metanol adalah bahan yang baik
untuk proses konversi ini, karena metanol merupakan senyawa monoalkohol
sederhana yang mudah untuk dikonversi untuk membentuk senyawa
hidrokarbon lainnya melalui proses katalitik. Penelitian ini dilakukan untuk
melihat selektifitas dari penggunaan dua katalis asam, yaitu y-alumina dan
zeolit H-ZSM-5, terhadap pengujian konversi metanol menjadi hidrokarbon cair.
Kedua katalis ini ditempatkan bersama di dalam reaktor dengan berat yang
tetap untuk setiap reaksi katalisis, yaitu sebanyak 1 g. Katalis asam y-alumina
disintesis dari gel boehmite yang diperoleh dari campuran larutan aluminium
nitrat dan amonia melalui proses aging dan kalsinasi pada suhu 500 °C selama
24 jam. Sedangkan katalis zeolit ZSM-5 disintesis dari larutan hidrogel dengan
komposisi mol AI20 : 33 Na20 : 100 Si02 : 44 R : 25 H2S04 : 4000 H20,
dimana R adalah zat pengarah TPABr. Sintesis dilakukan pada suhu 180 °C
selama 240 jam yang diikuti dengan tahap pengubahan Na-ZSM-5 menjadi
bentuk H-ZSM-5. Karakterisasi katalis dilakukan dengan analisis secara
difraksi sinar-X dan spektroskopi FT-IR. Proses konversi metanol telah
dilakukan dengan menggunakan variasi suhu reaksi, yaitu pada 200 °, 225 °,
250 °, 275 °, dan 300 °C, dan dengan berbagai fraksi waktu reaksi pada variasi suhu reaksi yang sama terhadap waktu konversi keseluruhan selama satu jam.
Dari analisis kromatografi gas, senyawa-senyawa yang dapat diidentifikasi dari
produk yang dihasilkan adalah sikloheksana dan xilena dengan total %
konversi yang diperoleh berturut-turut sebesar 2,482 %; 17,362 %; 42,550 %;
15,474 %; dan 9,066% untuk reaksi yang dilakukan pada suhu 200 °, 225 °,
250 °, 275 °, dan 300 °C."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dariyus
"Hidrokarbon C2-C4 merupakan senyawa yang penting untuk segala macam industri petrokimia misalnya bahan baku polimer, MTBE, isoprena, untuk reagen alkilasi, dan bahan baku LPG. Senyawa tersebut dapat diperoleh secara suslainable (berkelanjuatan) dari senyawa n-butanol melalui proses katalitik dan n-butanol merupakan senyawa yang dapat diperbaharui (renewable) karena dapat dihasilkan dari proses fermentasi senyawa karbohidrat.
Pengembangan proses katalitik dapat dilakukan dengan menggunakan katalis zeolit alam yang dimodifikasi dengan penambahan boron oksida. Perpaduan antara dua komponen katalis tersebut diharapkan dapat meningkatkan kineija katalis dalam mengkonversi n-butanol menjadi C2-C4.
Penelitian ini telah mempelajari bahwa penambahan boron oksida pada zeolit alam sebanyak 25% memberikan konversi dan yield C2-C1 yang paling baik. Hasil karakterisasi XRD terhadap penambahan boron oksida sebanyak 25% tersebut tidak menunjukkan puncak-puncak yang dimiliki oleh komponen boron oksida. Hal ini menunjukkan bahwa boron oksida terdispersi secara sempuma pada permukaan zeolit alam dan berinteraksi secara kuat dengan /razne/kerangka zeolit. Hasil analisis BET menunjukkan bahwa luas permukaan katalis tanpa penambahan boron oksida adalah 343 m2/g yang dapat dipertimbangkan merupakan luasan yang cukup untuk mendispersikan komponen boron oksida pada permukaan katalis zeolit alam.
Uji aktivitas katalis dengan menggunakan katalis yang mengandung 25% boron oksida tersebut memberikan hasil konversi n-butanol terbaik sebesar 82,9% dan yield C2--C4 sebesar 14,7% pada temperatur reaksi 400°C ketika jumlah umpan n-butanol mencapai 21 gram. Hal ini diperkirakan bahwa pada katalis tersebut terbentuk suatu spesi yang berperan sebagai inti aktif baru dalam mengkonversi n- butanol menjadi C2-C4 dibanding dengan zeolit alam tanpa penambahan boron oksida."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49784
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Arifianto
"Bahan bakar minyak merupakan suatu kebutuhan yang sangat penting bagi kehidupan manusia. Bahan bakar minyak yang ada sekarang diperoleh melalui reaksi perengkahan melalui minyak bumi. Tetapi ketergantungan manusia akan bahan bakar fosil perlu dikurangi karena cadangan minyak bumi yang semakin berkurang setiap tahunnya. Karena hal inilah dikembangkan bahan bakar minyak yang didapat melalui proses perengkahan minyak nabati. Salah satu jenis minyak nabati yang banyak terdapat di alam adalah minyak kelapa sawit. Metode perengkahan katalitik merupakan suatu cara untuk memecahkan rantai karbon yang cukup panjang, menjadi suatu molekul dengan rantai karbon yang lebih sederhana, dengan bantuan katalis.
Bantuan katalis ini bertujuan untuk menurunkan suhu dan tekanan pada saat reaksi. Sementara itu, katalis yang digunakan dalam penelitian ini adalah katalis B203/Al203 yang bersifat asam. Penambahan B203 dimaksudkan untuk membentuk spesi peroksida (022-) pada permukaan katalis. Sedangkan Al203 bersifat asam dan sangat baik untuk memutuskan ikatan antar karbon.
Metode yang digunakan dalam menguji hasil reaksi adalah dengan FT-IR, dan GC-FID. Penelitian ini dilaksanakan pada tekanan atmosferik dengan reaktor fixed bed. Berbagai variasi yang akan dilakukan dalam penelitian ini adalah variasi temperatur (350°C, 400°C, 450°C, dan 500°C), kandungan B203 (5%, 10% 15%, 20%, dan 25%) pada katalis dan variasi jenis umpan yang di treatment. Uji aktivasi katalis dengan menggunakan katalis 10% B203/Al203 memberikan hasil yield fraksi bensin terbaik sebesar 58% pada temperatur 450°C dengan umpan POME (Palm Oil Methyl Ester). Ini menunjukkan terjadinya peningkatan keasaman katalis, dan peranan spesi peroksida (O22-) sebagai inti aktif baru."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49573
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Ayu Radini Radini
"Seiring dengan pertambahan jumlah penduduk dan semakin meningkatnya kebutuhan sarana transportasi serta aktivitas industri, kebutuhan energi akan bahan bakar minyak khususnya bensin juga semakin meningkat. Ironisnya, ternyata perkembangan yang terjadi antara kebutuhan akan minyak bumi berbanding terbalik dengan produksinya. Di sisi lain, pemakaian bensin secara besar-besaran telah terbukti ikut menambah beratnya pencemaran lingkungan dan menimbulkan pemanasan global.Untuk mengatasi hal ini diperlukan sumber alternatif untuk menghasilkan bahan bakar minyak tersebut. Sumber energi yang berpotensi adalah berasal dari materi biomassa (hayati), seperti minyak kedelai dan senyawa hasil fermentasi yaitu senyawa organik aseton, butanol dan etanol (ABE).
Penelitian ini bermaksud untuk mengembangkan proses perengkahan katalitik untuk memproduksi senyawa hidrokarbon setaraf gasoline dari umpan campuran minyak kedelai dengan berbagai senyawa ABE mengunakan ZSM-5/Alumina. Reaksi akan dilaksanakan dalam suatu fixed bed reactor yang beroperasi pada tekanan atmosferik. Temperatur reaksi dilakukan dari 350°C sampai dengan 450°C dengan laju alir gas pembawa (N2) 10 ml/min. Berat katalis ZSM-5/Alumina yang digunakan sebanyak 3 gr untuk waktu operasi selama 4 jam. Penambahan berbagai senyawa ABE pada minyak kedelai dimaksudkan sebagai sumber alkil untuk mengatasi kereaktifan gugus ikatan ester dan ikatan rangkap karbon pada molekul trigliserida agar terjadinya reaksi polycondensation atau polimerisasi yang mengakibatkan molekul minyak menjadi bertambah besar dapat dihindari serta dapat meningkatkan yield yang diperoleh dan menambah kapasitas produksi.
Peran katalis asam ZSM-5/Alumina akan mengakselerasi reaksi dehirasi ABE sehingga membentuk alkil permukaan. Proses perengkahan katalitik campuran minyak kedelai dengan berbagai senyawa ABE telah menghasilkan hidrokarbon setaraf fraksi gasoline dengan konversi tertinggi sebesar 98.23 %. Yield hidrokarbon setaraf fraksi gasoline maksimal sebesar 71.2 % dihasilkan dari umpan campuran minyak kedelai dengan etanol pada perbandingan 1gr minyak kedelai dan 0.4 gr etanol. Konversi minyak kedelai dan yield hidrokarbon setaraf fraksi gasoline tertinggi pada berbagai jenis umpan campuran diperoleh pada rentang suhu 375 - 400°C. Penambahan senyawa ABE cukup efektif dalam mengadisi ikatan karbon ganda dan karbonil yang terlihat dari peningkatan absorbansi pada ikatan percabangan dan penurunan absorbansi pada C=O serta tidak terbentuknya olefin pada produk.

The development of transportation sector and industry activity in Indonesia is growing very fast along with energy needs especially gasoline, but the development of oil needs is not supported by the production itself. Beside of that, the uses of oil fuel causes global warming and environment pollution. In order to handle this problem, alternative resources is needed to produce that oil fuel. Potential energy resources are biomass material, such as soybean oil and organic fermentation compounds ( Acetone, Butanol and Ethanol).
This research is meant to improve catalytic cracking process to produce hydrocarbon compounds equal with gasoline from mixing of soybean oil with various ABE compounds using ZSM-5/ alumina. Reaction will be done in fixed bed reactor which operates at atmospheric pressure. Reaction temperature will be done from 350° C until 450°C with volumetric velocity of carrier gas (N2)10 ml/ min. Weight of ZSM-5/ alumina catalysts used in this research is 3 gr for 4 hours operation time. The addition of various ABE compounds to soybean oil is meant to be an alkyl resource for handling ester functional group and carbon double bound reactivity in triglyceryde molecule in order to avoided polycondensation or polymerization reaction which causing oil molecule get larger. Beside of that, yield product and production capacity can be increased.
Acid catalyst ZSM-5/alumina will accelerating ABE dehydration reaction to compose surface alkyl. Catalytic cracking in mixing of soybean oil with various ABE compounds produced hydrocarbon equal gasoline fraction with conversion 98.23 %. Yield of hydrocarbon compound equal to gasoline fraction is 71.2 % produced by mixing of soybean oil ? ethanol with mass comparison 1: 0.4 . The best soybean oil conversion and yield of hydrocarbon compound equal to gasoline fraction in every mixture resulted at temperature range 375 - 400°C. The addition of ABE compounds is effective to reduce carbonyl and olefin absorbance resulting methyl,methylene and alkyl absorbance higher than absorbance in soybean oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49767
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setiadi
"Senyawa aseton dapat dipandang sebagai salah satu model senyawa organik turunan biomasa (renewable material). Senyawa aseton telah dapat dikonversi menjadi hidrokarbon aromatik menggunakan katalis H-ZSM-5 dengan variasi rasio Si/Al (25, 75 dan 100) menggunakan fixed bed reactor bertekanan atmosferik pada suhu diatas 350 oC. Didapatkan bahwa ketiga rasio H-ZSM-5 memiliki kemampuan shape selectivity yang tinggi untuk senyawa aromatik (yield >70%). Perbedaan kinerja katalis terlihat setelah 2 jam reaksi, katalis rasio Si/Al=75 dan 100 lebih rentan mengalami deaktivasi. Sedangkan, ZSM-5 rasio Si/Al=25 masih bertahan dengan konversi 100% & yield diatas 70%. Terbentuknya kokas menyebabkan penurunan keasaman katalis dan luas permukaannya.

Acetone is a organic polar compound which can be produced renewably from biomass through a fermentation process or by catalytic process of a biomassderived liquid. The prospective and sustainable system from a new schematic route can be established, if this product could be transformed into hydrocarbons. That?s why this research is intended to develop a catalytic process for aromatic production from acetone using ZSM-5.Organic acetone could be transformed into aromatic by catalytic reaction using ZSM-5 in fixed-bed reactor at atmospheric. HZSM-5 with Si/Al = 25 was more active and stable than that of Si/Al ratio 75 or 100. The yield of aromatic was obtained higher than 70 wt %. It indicates that the reaction of acetone requires a high acid density and H-ZSM-5 is shape selective catalyst for the aromatic formation due to pore opening (0,56 nm) is very close to the geometrical molecular size of the aromatic. The deactivation by coking caused the decreasing the area surface and the acidity of catalyst."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1284
UI - Disertasi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>