Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23092 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1991
S38115
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sumanto
Yogjakarta: Andi, 1991
621.313 SUM m
Buku Teks  Universitas Indonesia Library
cover
Chairunnas Weratno
"Listrik saluran transmisi memiliki rencana perlindungan beberapa yang digunakan untuk menangani setiap kegagalan yang mungkin atau kondisi seluruh sistem. Ada banyak masalah yang mungkin terjadi pada saluran transmisi listrik Salah satu masalah adalah memiliki beban tidak seimbang yaitu fase setiap berurusan dengan beban yang tidak sama baik dalam besarnya atau sudut satu sama lain. Akibatnya beban tidak seimbang akan menghasilkan arus urutan yang tidak perlu negatif yang pada akhirnya akan menyebabkan banyak masalah Karena efek ini sistem transmisi perlu memiliki semacam mekanisme atau rencana yang akan mencegah kegagalan sistem.
Salah satu cara untuk mengurangi arus urutan negatif ditarik oleh ketidakseimbangan beban tersebut untuk menyuntikkan lain urutan negatif arus dari sumber lain yang memiliki besar yang sama dengan salah satu yang diproduksi oleh beban. Dengan demikian suatu Vector Space Shunt Pulse Width Modulation Controlled Inverter digunakan untuk menghasilkan arus ini Inverter ini kemudian akan terhubung ke saluran transmisi bersama dengan generator. Mudah-mudahan inverter mencegah urutan negatif saat ini menjadi merusak rotor generator.
Dalam proyek ini SVPWM inverter akan dipelajari secara mendalam serta penjelasan tentang bagaimana inverter ini bekerja dalam saluran transmisi Semua model termasuk saluran transmisi beban tidak seimbang dan SVPWM inverter akan dimodelkan dan disimulasikan dalam MATLAB Simulink.

Power transmission line has several protection plans that are used to deal with any possible failure or condition throughout the system. There are many problems that may occur in the power transmission line. One of the problems is having an unbalanced load, i.e. each phase is dealing with load that is not equal in either magnitude or angle with each other. As a result, the unbalanced load will produce an unnecessary negative sequence current that will eventually causing many problems. Due to this effect, the transmission system needs to have some sort of mechanism or plan that will prevent the system failure.
One of the ways to reduce this negative sequence current drawn by the unbalanced load is to inject another negative sequence current from another source that has the same magnitude with the one that is produce by the load. Thus, a Space Vector Controlled Shunt Pulse Width Modulation Inverter is used to produce this current. This inverter will then be plugged into the transmission line along with the generator. Hopefully, the inverter prevents the negative sequence current into damaging the rotor in the generator.
In this project, SVPWM inverter will be studied in depth as well as the explanation of how this inverter works in the transmission line. All models, including the transmission line, unbalanced load, and SVPWM inverter are going to be modelled and simulated in MATLAB/Simulink.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43536
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Putranto
"Studi tentang perancangan motor listrik jenis BLDC magnet permanen semakin banyak dilakukan. Motor BLDC banyak dipilih karena tipe motor ini dikenal memiliki ketahanan yang tinggi, disain yang sederhana, dan kemampuan bekerja pada RPM tinggi. Dalam perancangan, perubahan ukuran baik diameter stator dan rotor maupun ketebalan motor pun menjadi hal yang harus diperhatikan. Perbedaan jumlah slot dan kutub juga turut memberikan kontribusi terhadap performa motor yang dirancang.
Dalam studi ini, sebuah motor BLDC dirancang menggunakan perangkat lunak berbasis FEA (Finite Element Analysis), yaitu Infolytica MotorSolve BLDC untuk kemudian dibuatkan prototipe dari rancangan tersebut. Selanjutnya, pada motor simulasi maupun motor prototipe yang sudah dibuat, dilakukan pengukuran parameter yang terdapat pada motor tersebut. Parameter yang diukur meliputi resistansi stator (Rs), induktansi pada sumbu-d (Ld), induktansi pada sumbu-q (Lq), dan konstanta back-EMF.
Hingga pada akhirnya, nilai yang terukur tersebut dibandingkan dan dievaluasi terhadap adanya perbedaan nilai antara parameter motor hasil simulasi dengan motor prototipe. Hal ini terjadi dikarenakan penggunaan material yang berbeda antara simulasi dan prototipe juga alat ukur yang digunakan. Kesulitan untuk mendapatkan material yang sama dan tempat pembuatan motor di Indonesia menjadi catatan utama dalam produksi sebuah motor listrik.

The study of electric motor permanent magnet type BLDC design is getting popular and interesting. Motor BLDC motor type was chosen because it is known to have high durability, simple design, and the ability to work at high RPM. In the design process, the change of both the stator and rotor diameter and the thickness of the motor are very important. The differences in the number of slots and poles are also contributing to the performance of the motor.
In this study, a BLDC motors are designed using a FEA (Finite Element Analysis) based software, Infolytica MotorSolve BLDC. After the simulated design is achieved, the prototype is produced. Subsequently, the parameters from both the simulation and prototype motor are measured. The measured parameters are stator resistance (Rs), the inductance on the d-axis (Ld), the inductance on the q-axis (Lq), and the back-EMF constant.
In the end, the measured values are compared and evaluated against the differences in value between the simulation results and the motor prototype measured parameters. This error occurs due to the usage of different materials between simulation and prototype also the measurement tools. The difficulties to obtain the same materials and workshop to make the motor in Indonesia became a major record in the production of an electric motor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Kadir
Jakarta: Djambatan, 1980
621.313 ABD m
Buku Teks  Universitas Indonesia Library
cover
Abdul Multi
"Pada penelitian ini dilakukan rancang bangun generator sinkron fluks aksial rotor belitan (AFWR) tiga fasa dengan pengaturan arus eksitasi. Generator yang dirancang mempunyai kapasitas skala kecil dengan tegangan, daya dan kecepatan masing-masing 380 V, 1 kW dan 750 rpm. Stator dan rotornya terbuat dari inti besi laminasi yang mempunyai alur. Generator ini mempunyai satu stator dua sisi alur yang dililit yang diletakkan diantara rotor ganda. Mesin fluks aksial pada umumnya menggunakan magnet permanen yang terpasang pada rotor. Penggantian magnet permanen dengan belitan yang terletak pada rotor akan menjadikan fluksnya dapat diatur dengan mengatur arus yang melalui kumparan medan.
Pada prinsipnya perancangan elektromagnetik dan mekanik mesin fluks aksial rotor belitan hampir sama dengan mesin fluks radial. Mesin yang satu berbentuk piringan dan lainnya berbentuk silinder. Mesin fluks aksial mempunyai keuntungan-keuntungan dibandingkan dengan mesin fluks radial.
Perancangan generator sinkron ini dimulai dengan menentukan spesifikasi dari mesin. Untuk selanjutnya dilakukan pemilihan bahan dan pemilihan parameter disain. Sebelum proses perancangan terhadap rangkaian listrik, rangkaian magnetik dan mekanik dilakukan, terlebih dahulu diasumsikan parameter optimisasi terkait dengan spesifikasi mesin. Perancangan dihitung dengan perangkat lunak Matlab dan digambar dengan SolidWorks.
Pada akhir dari proses perancangan ini diharapkan performansi mesin terpenuhi. Bila performansinya belum terpenuhi, maka proses perancangan perlu diulangi dengan mengubah parameter optimisasi. Bila performansi telah terpenuhi, maka lembar data perancangan dapat dicetak. Proses optimisasi dalam perancangan mesin bertujuan agar diperoleh efisiensi yang lebih tinggi dengan berpatokan pada daya output yang telah ditentukan sebelumnya.
Dalam perancangan generator AFWR, efisiensi dapat dioptimalkan dengan mengubah parameter optimisasi seperti celah udara, tegangan eksitasi, jumlah lilitan stator per fasa dan diameter konduktor stator. Sedangkan dalam prakteknya parameter optimisasi yang dapat diubahubah adalah celah udara dan tegangan eksitasi. Dengan melakukan optimisasi diperoleh solusi terbaik pada celah udara 0,5 mm dan tegangan eksitasi 10 V dengan efisiensi 85%. Mesin sinkron AFWR tiga fasa ini mempunyai efisiensi yang lebih tinggi dibandingkan dengan mesin jenis lainnya yang mempunyai daya output 1 kW.
Jumlah konduktor per alur pada stator dan rotor dijadikan patokan untuk dilakukan penggulungan. Perubahan jumlah lilitan dan diameter konduktor masih memenuhi persyaratan untuk faktor pengisian alur. Dari beberapa jenis pengujian menunjukkan bahwa perancangan generator ini telah sesuai dengan parameter-parameternya. Hasil pengujian hambatan kumparan pada satu sisi alur stator diperoleh gambar ketiga gelombang tegangan kumparan fasa tersebut berimpit. Hal ini menunjukkan keseimbangan hambatan antara ketiga kumparan stator.
Pada pengujian perubahan celah udara diperoleh bahwa semakin besar celah udara, maka semakin besar tegangan eksitasi yang dibutuhkan, untuk menghasilkan tegangan terminal 380 V pada beban nol dengan celah udara 0,3 mm, 0,5 mm dan 0,7 mm diperlukan tegangan eksitasi masing-masing 5,5 V, 5,61 V dan 6,94 V.
Berdasarkan hasil pengujian berbeban, diperoleh celah udara yang optimal adalah 0,5 mm. Efisiensi generator sinkron AFWR dari hasil pengujian pada celah udara 0,5 mm diperoleh 61,61 % pada beban penuh dengan tegangan eksitasi 10,85 V. Efisiensi yang rendah tersebut disebabkan oleh tiga faktor: hambatan kumparan stator dan arus eksitasi yang tinggi, laminasi inti besi yang tidak terisolasi dengan cukup baik dan ketidakrataan celah udara.

The generator designed in this research is three phase axial flux wound rotor (AFWR) synchronous generator with controlling the field current. It is small-scale capacity with terminal voltage, power and speed are 380V, 1 kW and 750 rpm respectively. The stator and the rotor are made from slotted lamination core. The generator has a single double-sided slotted wound stator sandwiched between twin rotor. The axial flux machine generally uses permanent magnets mounted on the rotor. Replacing the permanent magnet with a winding in the rotor, makes it possible to control the flux by varying the current flowing into the field winding.
In principle, the electromagnetic design of AFPM machines is similar to its radial flux PM (RFPM) counterparts with cylindrical rotors. One of the machines is a disc-type mechine and the other is cylindrical-type machine. The axial flux (AF) machines have a number of distinct advantages over radial flux machines (RFM).
The design of synchronous generator is started with determining the specifications of the machine, then selecting materials and assigning design parameters. Before processing the design of the electrical circuit, the magnetic circuit and the mechanics, it is first assumed the parameter optimizations associated with the specification of the machine. The design is calculated by Matlab program and drawn by Solidwork software.
It is expected at the end of the design process, the performance of the machine meets the requirements. If the performance has not met yet, then the design process should be repeated by changing optimization parameters. If the performance has been met, the design data sheet can be printed. The process of optimization in the design of the machine aims to obtain higher efficiency with power output fixed previously.
In the design of AFWR generator, the efficiency can be optimized by changing optimization parameters such as air gap, excitation voltage, number of stator turns per phase and stator conductor diameter. While in practice, parameters which can be varied are the air gap and the excitation voltage. Varying the parameter optimization, it results the best solution in the air gap and the exctation voltage of 0,5 mm and 10 V respectively with the efficiency of 85%. Three phase AFWR synchronous machine has higher efficiency than the other machine types having the output power of 1 kW.
The number of conductors per slot in the stator and the rotor becomes a reference for winding. The change of the number of turns and conductor diameter still meets the requirement for slot fill factor. From some type of tests, they show that the generator design matches their parameters. The result of winding resistance test in one side of stator slot shows the three waves of phase winding voltage coincide with each other. It shows that the resistance of the three stator windings are balanced.
In the test of air gap changes, it is obtained that the wider the air gap, the higher the excitation voltage is needed. In order for the terminal voltage to be 380 V in the air gap of 0,3 mm, 0,5 mm and 0,7 mm, the excitation voltage supplied to the rotor must be 5,5 V, 5,61 V and 6,94 V respectively.
According to the load test, the optimal air gap is 0,5 mm. From the result of test, the efficiency of AFWR synchronous generator at the air gap of 0,5mm is 61,61 % at full load with the excitation voltage of 10,85 V. This low efficiency of the machine is caused by three factors: the high stator winding resistance and field current, inedequately isolated core laminations and the nonuniform air gap."
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1946
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ahmad Feisal
Depok: Fakultas Teknik Universitas Indonesia, 1992
S37990
UI - Skripsi Membership  Universitas Indonesia Library
cover
Restu Nugroho
"Penggunaan SRM (Switched Reluctance Motor) untuk suatu keperluan tertentu mengharuskan perancangan SRM sesuai suatu spesifikasi. Disisi lain, dalam suatu perancangan SRM diperlukan optimalisasi kinerja agar perancangan semakin baik. Optimalisasi dimensi menjadi salah satu faktor penting dalam optimalisasi kinerja SRM. Untuk mencapai hal ini, diperlukan analisis hubungan kinerja SRM seperti torsi dan efisiensi terhadap dimensi SRM yaitu rotor dan stator.
Dalam penelitian ini didapatkan perancangan SRM menghasilkan daya output 191 kW, torsi 1213 Nm, dan efisiensi 90,1 % pada rated speed 150 rpm. Optimalisasi desain dimensi stator dan rotor menghasilkan peningkatan torsi puncak statik 114,5020123 % , dan peningkatan efisiensi rata-rata sebesar 102,2768 % pada rentang kecepatan 100 rpm-3300 rpm.

SRM (Switched Reluctance Motor) for a usage need spesific design according to a spesification. In other hand, SRM design need the work optimization to reach good design. Dimensional optimization is a important factor in SRM performance optimization. Need to analysis relationship between performance of SRM such us torque and efficiency toward dimensional factor such as rotor and stator.
In this research, SRM results output power 191 KW, torque 1213 Nm, and efficiency 90,1 % at rated speed 1500 rpm. Optimization of stator and rotor dimensional results increasing of static torque peak 114,5020123 %, and increasing of average efficiency at 102,2768 % at range 100 rpm-3300 rpm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64744
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nina Oktarina
"Skripsi ini membahas mengenai karakteristik kecepatan dari motor arus searah dengan penguatan terpisah yang akan dikendalikan dengan menggunakan pengendali PI (Proporsional Integral) dan PID (Proporsional Integral Differensial). Ketika motor mengalami perubahan beban, akan ada perubahan pada kecepatan. Pengendali akan mengatur sinyal tegangan motor agar kembali pada kecepatan yang diinginkan atau stabil. Pada pengontrolan ini akan dapat dilihat respon plant, penyesuaian pengaturan pengontrol sesuai keperluan, dan menganalisa kestabilan dari sistem menggunakan kestabilan Routh-Hurwitz.

This skripsi will discuss about characteristics of the speed of direct current motor with separated excitation to be controlled by using a PI (Proporsional Integral) and PID (Proporsional Integral Differential) controller. When the motor load changes, there will be a change in velocity. The controller will adjust the motor voltage signal to return to the desired speed or stability. On controlling this plant will be able to see the response, the controller setting adjustments, as necessary, and analyze the stability of system using Routh Hurwitz stability."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45525
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhidin
"Generator induksi sudah mulai banyak dikembangkan, dikarenakan generator induksi memiliki banyak kelebihan. Generator induksi dapat diperoleh dari motor induksi dengan cara memberikan suplai daya reaktif kedalam motor induksi. Pada penelitian ini, dilakukan perancangan mesin induksi dengan kapasitas 100kW. Simulasi dilakukan tiga tahap, yaitu: pada tahap pertama melakukan perancangan motor induksi. Pada tahap ini melakuan desain dengan menentukan hubungan antara jumlah slot stator dan rotor untuk mendapatkan desain yang optimal, dengan membandingkan masing-masing desain, apakah hasil simulasi dari masing-masing desain sudah mendekati dengan daya 100 KW, efisiensi dan faktor daya yang baik. Tahap kedua adalah melakuan optimasi disain yang dipilih dari tahap pertama yaitu dengan memvariasikan jumlah lilitan, lebar celah gigi, dan kedalaman slot rotor, dan tahap ketiga melakuan simulasi uji mesin induksi sebagai generator.
Dari hasil penelitin bahwa variasi jumlah lilitan stator dan rotor, lebar celah gigi dan kedalaman slot rotor dapat mempengaruhi daya keluaran, efisiensi dan paktor daya. Pada penelitan ini berhasil mendapatkan desain yang diinginkan yaitu sebesar 102 KW dengan efisiensi 94.39 dan faktor daya 0.896. sedangkan pada pengujian mesin induksi beroperasi sebagai generator, berhasil dilakukan dengan exitasi 150 A dengan putaran 825 rpm, daya yang dibangkitkan sebesar 114 KW pada tegangan output 234 Vrms.

Induction generator has started to be developed because induction generator has many advantages. The induction generator can be obtained from the induction motor by providing a reactive power supply into the induction motor. In this research, the design of induction machine with 100kW capacity. Simulation performed three stages, namely in the first stage of designing an induction motor. At this stage do the design by determining the relationship between the number of stator and rotor slots to obtain the optimal design, by comparing each design, whether the simulation results of each design is close to 100 KW power, efficiency and good power factor. The second stage is to design the optimization of the design selected for the first stage by varying the number of loops, the width of the tooth gap, and the depth of the rotor slot, and the third stage performing the simulation of the induction machine test as a generator.
From the results of the research that the variation in the number of stator and rotor windings, the width of the tooth gap and the depth of the rotor slot can affect the output power, efficiency, and power factor. In this research managed to get the desired design that is equal to 102 KW with efficiency 94.39 and power factor 0.896. Whereas in the induction machine testing operates as a generator, successfully done with excitation 150 A with the spin of 825 rpm, power raised equal to 114 KW at output voltage 234 Vrms.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49701
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>