Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15064 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1992
S37962
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendrianto
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39016
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henry Hendarwin
"Sistem akuisisi data Electroencephalography (EEG) telah dikembangkan. menggunakan Analog Front End (AFE) ADS1299 EEGFE-PDK berbasis Raspberry Pi. Sistem ini merupakan kelanjutan dari sistem yang dikembangkan sebelumnya, dengan menambahkan fitur Relative Power Ratio (RPR), komunikasi Local Area Networking (LAN) dan GUI (Graphical User Interface). Fitur RPR perlu dipahami Karakteristik sinyal EEG. ADS 1299 memiliki beberapa keunggulan diantaranya Akuisisi data secara simultan, resolusi 24 bit, membutuhkan daya <0,2 mW dan noise <1 μV. Sistem akuisisi data ini terdiri dari 4 unit AFE yang dikonfigurasi secara daisy rantai. Komunikasi antara AFE dan Raspberry Pi menggunakan periferal serial antarmuka (SPI) dengan format RDATA. Bahasa pemrograman C digunakan untuk komunikasi antara Raspberry dengan AFE dan Matlab digunakan untuk pemrosesan sinyal. Data dari Raspberry ditransfer melalui LAN ke Personal Computer (PC). Kemudian disaring menggunakan Butterworth order 5. Data EEG dan perhitungan RPR ditampilkan secara real-time. Perhitungan dilakukan dengan Fast Fourier Transforms (FFT) dan Power Spectral Density (PSD). Sistem ini telah dievaluasi dengan menggunakan simulator EEG (NETECH Mini-Sim EEG) yang menghasilkan sinyal listrik sinusoidal dengan frekuensi 2 Hz, 5 Hz, dan amplitudo tegangan 30, 50 μV. Dengan perbandingan rata-rata FWHM (Full Width at Half Maximum) didapatkan untuk frekuensi 2Hz di sistem akuisisi tersebut memperoleh nilai 4 Hz, dan dalam Neurostyle 4 Hz. Di frekuensi 5 Hz, rata-rata nilai FWHM yang diperoleh untuk sistem akuisisi yang dibuat adalah 13 Hz dan Neurostyle pada 14 Hz.

The systems have been developed to obtain Electroencephalography (EEG) data using the Raspberry Pi based Analog Front End (AFE) ADS1299 EEGFE-PDK. This system is a continuation of a previously developed system, supported by Relative Power Ratio (RPR) features, Local Area Networking (LAN) and GUI (Graphical User Interface) features. EPR. ADS 1299 has several advantages that can be taken from simultaneous data, 24 bit resolution, requires power <0.2 mW and noise <1 μV. This data acquisition system consists of 4 AFE units completed by daisy chains. Communication between AFE and Raspberry Pi uses a serial peripheral interface (SPI) with RDATA format. C programming language is used for communication between Raspberries and AFE and MATLAB is used for signal implementation. Data from Raspberry is transferred via LAN to Personal Computer (PC). Then filtered using Butterworth order 5. EEG data and realtime calculations. The calculations are carried out by Fast Fourier Transforms (FFT) and Power Spectral Density (PSD). This system has been evaluated using an EEG simulator (NETECH Mini-Sim EEG) which produces sinusoidal electrical signals with a frequency of 2 Hz, 5 Hz, and a amplitude of 30, 50 μV. With the average change in FWHM (Full Width at Half Maximum) obtained for the 2Hz frequency in the acquisition system a value of 4 Hz is obtained, and in Neurostyle it is 4 Hz. At a frequency of 5 Hz, the average FWHM value obtained for the acquisition system is 13 Hz and Neurostyle is 14 Hz."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kadek Dwi Pradnyana
"
ABSTRAK
Akusisi sinyal adalah hal yang penting dalam teknologi modern. Compressive sensing dapat membuat proses akusisi sinyal atau data lebih cepat dan efektif. Compressive sensing memungkinkan jumlah pengukuran atau sampling yang jauh lebih sedikit dibandingkan sinyal asli. Compressive sensing digunakan secara luas pada berbagai bidang, seperti radar, kamera, pencitraan medis, seismic imaging, cognitive radio hingga wireless sensor network WSN . Hal penting dalam compressive sensing adalah memilih matriks proyeksi dan kamus basis sparse yang memenuhi Restricted Isometry Property RIP . Namun pengujian RIP sulit untuk dilakukan sehingga digunakan parameter lain yang lebih mudah untuk dihitung, yaitu mutual coherence. Berbeda dengan RIP, mutual coherence memerikan jaminan rekonstruksi yang lebih lemah. Sehingga dilakukan analisis hubungan antara mutual coherence terhadap hasil rekonstruksi citra. Didapatkan bahwa pada sistem kompresi, mutual coherence memiliki hubungan yang kuat terhadap citra hasil rekonstruksi. Sedangkan pada sistem pencitraan ECVT, mutual coherence hanya memiliki hubungan yang sangat lemah terhadap citra hasil ECVT.

ABSTRAK
In modern technology, signal acquisition is important. Compressive sensing can make the process of acquiring signals or data to be more quickly and effectively. Compressive sensing allows a much smaller number of measurements or sampling than the original signal. Compressive sensing is widely used in various fields, such as radar, cameras, medical imaging, seismic imaging, cognitive radio to wireless sensor networks WSN . An important point in compressive sensing is to choose a projection matrix and a dictionary that meets Restricted Isometry Property RIP . But RIP testing is difficult to do, so that other parameter is used because it is easier to calculate, namely mutual coherence. Unlike RIP, mutual coherence only provides a weaker reconstruction guarantee. So that this research do analysis of relation between mutual coherence and reconstructed image. It was found that in the compression system, mutual coherence has a strong relationship to the reconstructed image. While in ECVT imaging systems, mutual coherence has only a very weak relationship to the ECVT image results."
Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arwinto P. Nugroho
"Pada skripsi ini dibuat suatu perangkat lunak simulasi modulator-demodulator VA-Differential Quadrature Phase Shift Keying yang bertujuan untuk mengetahui proses modulasi yang terjadi pada modulator serta unjuk kerja demodulator dalam mendemodulasikan sinyal lU4-DQPSK yang telah dipengaruhi oleh fa-tor pengganggu, yaitu Additive White Gaussian Noise (AWGN) dan fading Rayleigh. Demodulator yang digunakan adalah demodulator deteksi koheren dengan dekoder diferensial. Simulasi ini dibuat dengan bahasa pemrograman Borland Delphi for Windows.
Analisa proses modulasi dan demodulasi dilakukan dengan mengamati bentuk bentuk sinyal yang terjadi pada setiap tahapan proses. Dari uji coba simulasi maka dapat dianalisa karakteristik unjuk kerja demodulator deteksi koheren dengan dekoder diferensial, yaitu berupa laju kesalahan bit atau Bit Error Rate (BER) sebagai fimgsi dari perbandiungan energi tiap bit terhadap kepadatan noise, .EyN,. Selain itu dianalisa jugs perbandingan unjuk kerja demodulator antara kanal yang tidak dipengaruhi fading Rayleigh dengan kanal yang dipengaruhi fading Rayleigh. Dari analisa hasil simulasi tersebut dapat diketahui bahwa fading Rayleigh menyebabkan penurunan unjuk kerja demodulator."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38861
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shanmugan, K. Sam
New York: John Wiley & Sons, 1979
621.380 43 SHA r
Buku Teks  Universitas Indonesia Library
cover
Muhammad Dahlan Yasadiputra
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irma Kresnawaty
"Komoditas kopi dan kakao Indonesia terkendala masalah mutu produk yang rendah akibat kontaminasi jamur penghasil okratoksin. Okratoksin A (OTA) bersifat neprotoksik, imunogenik, karsinogenik dan teratogenik yang membahayakan kesehatan. Karena efek negatif yang diakibatkan oleh mikotoksin ini, maka perlu dikembangkan deteksi dini kontaminasi okratoksin. Pendeteksian awal adanya pertumbuhan jamur pada produk pertanian dan perkebunan adalah kunci pencegahan pertumbuhan dan produksi okratoksin. Penelitian ini bertujuan menghasilkan antibodi imunoglobulin Y (IgY) untuk mengembangkan metode perakitan perangkat deteksi cepat berbasis imunologi untuk deteksi OTA. Hasil penelitian menunjukkan bahwa antibodi poliklonal anti OTA diperoleh dari telur ayam pada periode ke-4 (7 minggu setelah imunisasi awal). Antibodi ini menunjukkan reaktivitas anti OTA dengan metode dot blot immunoassay dan masih menunjukkan reaktivitas anti OTA sampai periode 9 (12 minggu setelah imunisasi awal). Antibodi anti BSA yang dihasilkan harus dihilangkan terlebih dahulu untuk meningkatkan sensitivitas antibodi terhadap okratoksin A dan pemisahan dapat dilakukan dengan penyerapan antibodi BSA. OTA-OVA dapat disintesis dengan metode ester aktif dengan menambahkan N-hidroksisuksiimida dan disiklokarboimida. Karakterisasi senyawa antara pada reaksi ini menunjukkan adanya absorpsi pada frekuensi 1600 cm-1 yang menunjukkan adanya vibrasi ulur ikatan C=O dan adanya banyak absorpsi pada 1300-1000 cm-1 yang mengindikasikan adanya serapan ulur yang kuat ikatan C-O. Konjugat antibodi-nanopartikel emas direaksikan pada kondisi pH optimum 9 dan pengenceran antibodi sebesar 1:7,5 v/v. Pada pengujian dengan spektrofotometer sinar tampak ditemukan adanya pergeseran serapan setelah antibodi dikonjugasikan pada nanopartikel emas sebesar 50 nm. Hasil pengujian pada test trip imunokromatografik masih belum terlihat jelas dan memiliki nilai cut off 10 ppb, tetapi mengindikasikan teknik ini dapat digunakan untuk deteksi kontaminasi okratoksin.

Indonesian coffee and cocoa commodities constrained low product quality problem due to contamination of fungal metabolites which accumulated ochratoxin. Ochratoxin A (OTA) is neprotoxic, immunogenic, carcinogenic and teratogenic to human health. Early detection method in post-harvest of coffee and cocoa samples should be developed because of those negative effects. Early detection of fungal growth in agriculture and plantation products is the key to prevent the growth and ochratoxin production. This research aim was to produce antibody to develop a method of assembling the rapid detection device for OTA detection. In this research it could be concluded that the anti OTA polyclonal antibodies could be obtained from chicken eggs in the 4th period (7 weeks after the initial immunization). These antibodies showed anti ochratoxin reactivity using dot blot immunoassay and still showed anti OTA reactivity in 9th period (12 weeks after initial immunization). Anti-BSA antibodies might be removed in order to increase sensitivity to ochratoxin and separation could be conducted using BSA antibody absorption. OTA-OVA could be synthesized using active ester method using N-hydroxysucciimide and dicyclocarboimide. Characterization of the intermediate compound showed C=O stretching vibrational band at 1600 cm-1 and C-O stretching vibrational band at 1300-1000 cm-1. Antibody-nanogold particle conjugate was synthesized in optimum pH 9 and dilution antibody at 1:7.5 v/v. There was 50 nm absorbtion shift in visible absorbtion after the antibody conjugated with nanogold particle. Immunochromatographic test trip testing had not showed the very clear visualization yet dan cut off value 10 ppb, but it indicated this technique could be conducted to detect ochratoxin contamination."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43371
UI - Tesis Membership  Universitas Indonesia Library
cover
Bismo Muhammad Rifqi
"Di Indonesia, sistem deteksi kapal asing diperlukan karena maraknya pencurian ikan oleh kapal-kapal asing. Dengan sistem tersebut, kapal-kapal asing yang memasuki wilayah perairan Indonesia akan lebih mudah diketahui dan dicegah. Pada penelitian sebelumnya, sistem deteksi kapal sudah dapat mendeteksi kapal dengan parameter estimasi kecepatan kapal, arah kapal, dan posisi kooordinat kapal setelah meninggalkan wilayah pengawasan JSN. Penelitian sebelumnya menggunakan asumsi kondisi empat buah sensor yang tidak bergerak. Dalam tulisan ini, penulis memperhitungkan node sensor bergerak. Node sensor yang bergerak didasarkan kondisi laut yang tidak tenang. Sensor yang bergerak akan memengaruhi besarnya nilai jarak antar sensor. Perubahan nilai tersebut diakibatkan oleh kondisi sensor yang terpengaruh oleh kondisi air yang bergelombang akibat faktor lingkungan. Besar nilai pergerakan node sensor didapat dengan mengkonversi hasil keluaran analog dari akselerometer pada sumbu x dan sumbu y ke satuan perpindahan. Pada sistem deteksi kapal ini, didapat nilai estimasi arah kapal, kecepatan laju kapal, dan posisi kooordinat kapal setelah meninggalkan wilayah pengawasan JSN. Penelitian ini menghasilkan persentase keberhasilan terbaik pada pengambilan data bernilai 99,73% untuk pendeteksian estimasi arah kapal, 62,59% untuk pendeteksian estimasi kecepatan kapal, 63,69% untuk pendeteksian estimasi koordinat x, dan 62,59% untuk pendeteksian estimasi koordinat y. Selain itu, didapat nilai korelasi positif/searah untuk pergerakan setiap pasang node sensor di perairan.

In Indonesia, a foreign vessel detection system is needed because of the widespread theft of fish by foreign vessels. With this system, foreign ships entering Indonesian waters will be more easily identified and prevented. In previous studies, the ship detection system was able to detect ships with estimated parameters of ship speed, vessel direction, and vessel coordinate position after leaving the JSN surveillance area. Previous studies used the assumption of the condition of four sensors that do not move. In this paper, the author considers moving sensor nodes. The moving sensor nodes are based on uneasy sea conditions. A moving sensor will affect the value of the distance between the sensors. The change in value is caused by the condition of the sensor which is affected by the surging water conditions due to environmental factors. The value of the movement of the sensor node is obtained by converting the analog output from the accelerometer on the x axis and y axis to the displacement unit. In this ship detection system, the estimated value of the ship's direction, the speed of the ship, and the coordinate position of the ship after leaving the JSN surveillance area. This study produces the best percentage of success in taking data worth 99.73% for the detection of ship direction estimates, 62.59% for the detection of ship speed estimates, 63.69% for the detection of x coordinate estimates, and 62.59% for the detection of y coordinate estimates. In addition, a positive correlation value is obtained for the movement of each sensor node pair in the waters."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febri Liantoni
"Ant Colony Optimization (ACO) is a nature-inspired optimization algorithm which is motivated by ants foraging behavior. Due to its favorable advantages, ACO has been widely used to solve several NP-hard problems, including edge detection. Since ACO initially distributes ants at random, it may cause imbalance ant distribution which later affects path discovery process. In this paper an adaptive ACO is proposed to optimize edge detection by adaptively distributing ant according to gradient ana-lysis. Ants are adaptively distributed according to gradient ratio of each image regions. Region which has bigger gradient ratio, will have bigger number of ant distribution. Experiments are conducted using images from various datasets. Precision and recall are used to quantitatively evaluate perfor-mance of the proposed algorithm. Precision and recall of adaptive ACO reaches 76.98% and 96.8%. Whereas highest precision and recall for standard ACO are 69.74% and 74.85%. Experimental results show that the adaptive ACO outperforms standard ACO which randomly distributes ants.

Ant Colony Optimization (ACO) merupakan algoritma optimasi yang terinspirasi oleh tingkah laku semut dalam mencari makan. Karena keunggulan yang dimilikinya, ACO banyak digunakan untuk menyelesaikan permasalahan non-polinomial yang sulit, salah satunya adalah deteksi tepi pada citra. Pada tahapan awal, ACO menyebarkan semut secara acak, hal ini dapat menyebabkan ketidak seim-bangan distribusi semut yang dapat mempengaruhi proses pencarian jalur. Paper ini mengusulkan algoritma adaptif ACO untuk mengoptimalkan deteksi tepi pada citra dengan cara menyebarkan se-mut awal secara adaptif berdasarkan analisis gradient. Semut disebarkan berdasarkan perbandingan gradient dari tiap bagian citra. Bagian citra dengan perbandingan gradient yang lebih besar akan men-dapatkan pembagian semut yang lebih banyak dibandingkan bagian lainnya. Percobaan dilakukan pada beberapa citra yang berasal dari berbagai data set. Precision dan recall digunakan sebagai alat untuk mengukur citra keluaran algoritma yang diusulkan secara kuantitatif. Berdasarkan hasil uji co-ba, adaptif ACO mampu mencapai precision dan recall hingga 76.98 % dan 96.8 %. Sedangkan, nilai precision and recall tertinggi menggunakan ACO murni mencapai 69.74% dan 74.85%. Hasil ini me-nunjukkan bahwa adaptif ACO mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO murni yang sebaran semut awalnya dilakukan secara acak."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information Technology, Department of Informatics Engineering, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>