Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 60852 dokumen yang sesuai dengan query
cover
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiqi Giffari
"Masalah terbesar dalam suatu proses Destilasi adalah sering berubahnya konfigurasi dari aliran masukan, dikarenakan aliran masukan tersebut tersebut berasal dari dari sumur minyak yang sudah pasti besarnya akan selalu berubah, sehingga akan berpengaruh terhadap konfigurasi unit-unit destilasi lainnya. Kebanyakan dari data yang dihasilkan dari proses distilasi merupakan data yang nonlinier dan kompleks jika menggunakan model yang konvensional. Jaringan syaraf tiruan adalah salah satu metode yang banyak dikembangkan untuk membuat sistem permodelan yang berasal dari pengambilan data secara langsung.. Sulitnya menemukan korelasi untuk memprediksi konfigurasi unit utilitas dan proses dengan aliran masukan yang selalu berubah dalam suatu proses distilasi menjadikan metode jaringan syaraf tiruan sebagai salah suatu solusi yang dapat digunakan untuk melakukan suatu prediksi setting kondisi operasi. Pada penelitian ini dilakukan pendefinisian model arsitektur jaringan saraf tiruan dengan menggunalkan backpropagation dan basis radial yang kemudian dilakukan proses pembelajaran dengan data pembelajaran berupa data historis yang didapat dari unit Debutanizer 16-C-104 selama periode April sampai 31 Agustus 2006. Unit ini merupakan unit proses distilasi kepunyaan PT. Pertamina (Persero) UP-VI Balongan. Penelitian ini menghasilkan sebuah perangkat lunak simulasi yang dapat memprediksikan setting temperatur feed, temperatur kondenser, temperatur reboiler, temperatur reflux, dan tekanan kondenser proses destilasi dengan tingkat kesalahan di bawah 1 % menggunakan kedua jenis JST. Sedangkan Jika menggunakan Hysis didapat hasil kesalahan diatas 5 %."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49601
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38505
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evi Lutfiati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28481
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silitonga, Permatasari
"Di Indonesia, dengue telah menjadi salah satu penyakit yang bersifat hiperendemis. Dengue diderita oleh masyarakat dari berbagai kalangan usia, baik pria maupun wanita. Dengue memiliki manifestasi klinis yang terdiri dari tiga fase: fase demam, fase kritis, dan fase penyembuhan. Banyak pasien dengue meninggal pada fase kritis karena pengobatan yang tidak dilaksanakan tepat waktu. Oleh karena itu, dibangunlah model-model yang dapat memprediksi tingkat keparahan dengue berdasarkan hasil uji laboratorium dari pasien yang bersangkutan menggunakan Artificial Neural Network (ANN) dan Analisis Diskriminan (AD). Dalam pembangunan model-model tersebut, digunakan data dengan jumlah yang sangat kecil, yakni sebesar 77 data. Dalam data tersebut, terdapat informasi mengenai hasil uji laboratorium dan diagnosis dari pasien yang bersangkutan. Diagnosis tersebut dikelompokkan ke dalam tiga kategori keparahan dengue, yakni DF sebagai tingkat ringan, DHF grade 1 sebagai tingkat sedang, dan DHF grade 2 sebagai tingkat parah. Dalam penelitian ini, dilakukan tiga pemisahan data, yakni dengan rasio data training : data testing sebesar 70% : 30%, 80% : 20%, and 90% : 10%. Berdasarkan hasil yang diperoleh, model-model prediksi ANN yang dibangun menggunakan fungsi aktivasi logistik dan tangen hiperbolik dengan persentase data training sebesar 70% menghasilkan akurasi (90.91%), sensitivitas (91.11%), dan spesifisitas (95.51%) tertinggi. Model-model tersebutlah yang diajukan dalam penelitian ini. Model-model tersebut akan mampu membantu para dokter dalam memprediksi tingkat keparahan dengue dari pasien yang bersangkutan sebelum memasuki fase kritis. Lebih jauh, model-model tersebut dapat memudahkan para dokter dalam mengobati pasien dengue secara dini, sehingga kasus-kasus fatal atau kematian dapat dihindari.

In Indonesia, dengue has become one of the hyperendemic diseases. Dengue is being suffered by many people of all ages, both men and women. Dengue has clinical manifestations that are divided into three phases: febrile phase, critical phase, and convalescence phase. Many patients have died in the critical phase due to the lack of timely treatment. Therefore, I developed models that can predict the severity of dengue based on the corresponding patients’ laboratory test results using Artificial Neural Network (ANN) and Discriminant Analysis (DA). In developing the models, I used a very small dataset, which only consisted of 77 data. The data contains information regarding the laboratory test results and the diagnosis of each of the corresponding patients. The diagnoses were classified into three categories of dengue severity, which are DF as the mild level, DHF grade 1 as the intermediate level, and DHF grade 2 as the severe level. I conducted three different data split, that is, with the ratio of training : testing = 70% : 30%, 80% : 20%, and 90% : 10%. It is shown that ANN models developed using logistic and hyperbolic tangent activation function with 70% training data yielded the highest accuracy (90.91%), sensitivity (91.11%), and specificity (95.51%). These ANN models are the proposed models in this research. The proposed models will be able to help physicians predict the dengue severity of a corresponding patient before entering the critical phase. Furthermore, it will ease physicians in treating dengue patients early, so deaths or fatal cases can be avoided."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pudji Setyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28482
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Bisyir Azhari
"Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).

Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Rifqy Mikoriza Turjaman
"Data yang didapat dari Polda Metro Jaya, pada arus mudik 6 hari sebelum Hari Raya Idul Fitri tahun 2017 ada sekitar 73 kasus kecelakaan lalu lintas yang disebabkan oleh rasa kantuk pada saat berkendara. Yang dimana 6 orang meninggal dunia, mengalami luka berat sebanyak 17 orang, dan luka ringan sebanyak 82 orang. Jumlah ini meningkat 16 persen dari tahun 2016 yang tercatat sebanyak 63 kejadian. Sistem pendeteksi dan prediksi kantuk dikembangkan untuk mengatasi masalah ini.
Metode peramalan untuk time series yang banyak menimbulkan proses prediksi cukup sulit dilakukan. Sistem prediksi kantuk dibangun dengan algoritme backpropagation neural network yang diharapkan mampu untuk mempelajari dan beradaptasi pada setiap pola dari data historis yang diberikan. Dengan mengenali pola dari data historis, sistem dapat memberikan prediksi dan respons yang akurat dengan akurasi sebesar 100.

Data obtained from Polda Metro Jaya, on the homecoming traffic 6 days before Idul Fitri 2017 there are about 73 cases of traffic accidents caused by drowsiness at the time of driving. Where 6 people died, severe injuries as many as 17 people, and light injuries as many as 82 people. This number increased 16 percent from the year 2016 recorded as many as 63 events. Drowsiness and prediction systems were developed to address this problem.
Forecasting methods for time series caused a lot of prediction process quite difficult. The sleep prediction system is built with backpropagation neural network algorithm expected to be able to learn and adapt to each pattern of given historical data. By recognizing patterns from historical data, the system is expected to provide accurate predictions and responses with 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>