Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 57302 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1995
S36429
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tryan Aditya Putra
"Sistem pengenalan gerakan manusia penting bagi manusia karena dapat membantu dan mempermudah pekerjaan manusia dalam berbagai hal. Algoritma Artificial Neural Network (ANN) dan Support Vector Mechine (SVM) digunakan untuk mampu mengenali gerakan manusia. Dengan algoritma tersebut, telah dibuat sistem yang mampu mengenali gerakan manusia. Sistem secara garis besar terdiri dari perangkat pada pengguna dan server. Perangkat pada pengguna ditunjukan untuk mengirimkan data ke server. Sedangkan server akan melakukan komputasi dengan data yang diberikan. Jembatan komunikasi antara perangkat pengguna dan server akan menggunakan XBee. Untuk sensor, digunakan sensor Inertial Measurement Unit. Dari hasil pengujian, sistem dengan ANN memiliki tingkat akurasi sebesar 95.78%, sistem dengan SVM memiliki tingkat akurasi sebesar 98.39%, sedangkan sistem gabungan memiliki akurasi sebesar 100%.

Human motion recognition is essential because it can help people in doing many things. Artificial Neural Network (ANN) and Support Vector Mechine (SVM) algorithm is used in the system to recognize human motion. The system consists of user device and server. Devices on user are intended for sending user data to the server. On the other hand, server will compute the data which were sent. Comunication between user device and server was conducted by using Xbee module. For the sensor, Inertial Measurement Unit sensor was used to recognize human motion. From the result, system with ANN resulted in 95.78% recognition rate, system with SVM give 98.39% and system with combined algorithm give 100% recognition rate."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58065
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Bisyir Azhari
"Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).

Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pengembangan sistem pengenalan wajah yang optimal akan sangat bergantung pada proses seleksi ciri yang digunakan sebagai basis pada pengenalan pola. Dalam proses seleksi ciri tersebut akan terdapat dua aspek yang akan saling berpengaruh yaitu, aspek reduksi terhadap jumlah data yang digunakan pada klasifikasi dan peningkatan kemampuan pendiskriminasiannya. Dalam proyek mahasiswa ini, digunakan salah satu metode pengkodean citra wajah yang dapat memenuhi kedua aspek di atas, yaitu metode Fisherface yang berbasis pada Fisher?s Linear Discriminant (FLD). FLD merupakan metode class specific yang mampu memaksimalkan perbandingan antara between scatter class dengan within scatter class. Fisherface memiliki karakteristik mampu mengenali citra wajah dalam berbagai variasi pencahayaan, ekspresi, dan atribut [BELH97]. Transformasi Whitening kemudian diterapkan sebagai pre-processor FLD. Penerapan Whitening akan menghasilkan vektor baru yang komponennya tidak saling berkorelasi dan variansinya sama dengan unity. Sedangkan Algoritma Genetika digunakan untuk mengotomatisasi proses reduksi dimensi sehingga penentuan reduksi dimensi yang optimal tidak lagi dilakukan secara eksperimental. Eksperimen dilakukan pada dua jenis basis data wajah yang berbeda. Basis data wajah Yale digunakan untuk melihat pengaruh penerapan transformasi Whitening pada citra wajah frontal. Sedangkan basis data wajah 3 Dimensi digunakan untuk melihat pengaruh transformasi Whitening pada citra wajah 3 dimensi. Hasil eksperimen dengan basis data Yale menunjukkan tingkat pengenalan Fisherface dengan transformasi Whitening relatif sama dengan yang tidak menggunakan Whitening. Sementara pada basis data 3 Dimensi, penerapan Whitening diduga dapat memperbaiki tingkat pengenalan Fisherface pada saat jumlah citra acuan relatif sedikit. Pada kedua basis data, transformasi Whitening dapat meningkatkan tingkat pengenalan pada kondisi di mana dimensi ciri yang dihasilkan sangat kecil."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Doloksaribu, Rudy
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39790
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rietman, Ed
Pensylvania: TAB Books,, 1988
001.644 04 RIE e
Buku Teks SO  Universitas Indonesia Library
cover
Wisnu Jatmiko
"Sistem penciuman elektronik telah dikembangkan dengan menggunakan kuarsa terlapis membran sebagai sensornya dan jaringan neural buatan Propagasi Balik (JNB-BP) sebagai sub-sistem pengenal polanya. Beberapa kelemahan penggunaan JNB-BP pada sistem penciuman elektronik adalah lamanya waktu pembelajaran dan adanya keterbatasan dalam mengenal pola aroma campuran. Untuk mengatasi masalah tersebut maka digunakan implementasi algoritma jaringan neural buatan berbasis Probabilistic Neural Network (JNB-PNN). JNB-PNN mempunyai 2 proses utama dalam tahap pembelajarannya yaitu menggunakan data pelatihan untuk membangun topologi JNB-PNN dan mencari parameter pemulus/smoothing parameter.
Pengujian yang dilakukan dengan mengklasifikasikan aroma campuran secara bertahan yaitu 6, 8, 12 dan 18 aroma. Tujuan daritahapan pengklasifikasian tersebut adalah untuk melihat kemampuan dari sistem dalam mengenai pola dari aroma campuran dengan membandingkan penggunaan JNB-BP dan JNB-PNN. Hasil kedua eksperimen menunjukkan bahwa semakin banyak pola aroma uamg diklasifikasin, tingkat pengenalan sistem semakin menurun. Kemampuan dari sistem penciuman elektronik yang menggunakan JNB-BP dalam mengenal 18 pola aroma menghasilkan tingkat pengenalan di bawah 70%. Sedangkan untuk JNB-PNN, walaupun terjadi penurunan terhadap pengenalan 18 pola yang diujikan, hasil pengenalannya masih di atas 90%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2001
JIKT-1-1-Mei2001-15
Artikel Jurnal  Universitas Indonesia Library
cover
Adila Alfa Krisnadhi
"Principal Componen Analysis (PCA) merupakan sebuah metode transformasi yang sangat berguna dalam sistem pengenalan wajah tiga dimensi. PCA berperan sangat baik sebagai alat pengekstraksi ciri yang sangat dibutuhkan dalam proses klasifikasi objek tiga dimensi yang diwakili oleh sekumpulan citra wajah dua dimensi. Dalam proses ekstraksi ciri dilakkan transformasi yang sekaligus melibatkan proses reduksi dimensi untuk mendapatkan ciri-ciri optimal sebagai basis ortogonal ruang wajah. Namun pada setiap himpunan citra wajah yang berbeda proses ini harus dilakukan berulang-ulang karena tingkat reduksi dimensi tersebut ditentukan oleh suatu parameter proporsi kumulatif nilai eigen yang harus ditentukan secara manual dari luar sistem. Akibatnya, proses untuk mendapatkan tingkat reduksi dimensi yang terbaik menjadi terhambat karena adanya proses trial and error tersebut. Disini akan dijelaskan sebuah metode untuk mengotomatisasi dan mengoptimasi proses di atas dengan menunjukkkan kinerja yang tidak kalah bahkan mampu memperbaiki kinerj PCA tanpa dikombinasikan dengan alogritma genetika, sehingga disini proses otomasi dan optimasi yang diharapkan dapat dinyatakan berhasil."
2003
JIKT-3-2-Okt2003-84
Artikel Jurnal  Universitas Indonesia Library
cover
Oka Uliandana
"ABSTRAK
Pengenalan wajah merupakan salah satu topik pada ilmu pengolahan citra yang sering dikembangkan. Salah satu dari metode pengenalan wajah ialah dengan menggunakan jaringan saraf tiruan. Jaringan saraf tiruan mengenali wajah-wajah dengan cara mempelajari wajah-wajah yang disediakan untuk pembelajaran. Metode pembelajaran yang digunakan pada tulisan ini ialah dengan lapisan tersembunyi berbentuk hemisfer yang merupakan pengembangan dari metode
backpropagation dengan data masukan yang direduksi oleh algoritma PCA. Metode ini menggunakan informasi sudut wajah pada citra sebagai parameter masukan selain data citra wajah tersebut. Seiring dengan majunya teknologi pengambilan gambar, metode ini dapat digunakan untuk mengenali wajah secara tiga dimensi.

ABSTRACT
Face recognition is one of most discussed topics in image processing. A method used for face recognition is using artificial neural networks. Artificial neural network recognizes faces by learning the faces given to train. The learning method proposed in this paper is using hemispheric structure hidden layer which is an improvement of backpropagation algorithm with reduced data as input using principal component analysis algorithm. This method needs face’s angle on the image as parameter inputs instead of only face data. As the technology of capturing image growing, this method can be applied as an algorithm for 3D face recognition."
[, Fakultas Teknik Universitas Indonesia], 2015
S59789
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>