Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 34784 dokumen yang sesuai dengan query
cover
Yudi Lifiandri
"Pengendali logika fuzzy biasa mampu memperbaiki tanggapan waktu suatu sistem kendali. Keberhasilan pengendali logika fuzzy biasa ini, sangat dipengaruhi oleh pengetahuan seorang operator ahli dalarn menentukan nilai-nilai aturan fuzzy, fungsi keanggotaan masukan dan keluaran fuzzynya. Kendala tersebut dapat diatasi dengan menerapkan jaringan syaraf buatan (intelligent neural ntwork) ke dalam perancangan pengendali logika fuzzy. Pada tugas sloipsi ini mencoba menerapkan sualu struktur jaringan syaraf buatan pada perancangan pengendali Iogika fuzzy untuk mengendalikan suatu sistem kendali yang selanjutnya disimulasikan dengan suatu perangkat lunak sederhana (visual basic 3.0). Struktur jaringan syaraf buatan tersebut adalah struktur normalized fuzzy neural network (NT-NN). Pengendali yang dirancang disebut pengendali NFNN. Dalam pengendalian suatu sistem, pengendali NFNN ini membutuhkan suatu identifikasi. Identifikasi disini berfungsi untuk memperoleh perubahan sinyal keluaran plant terhadap perubahan sinyal masukan plant. Dengan kemampuan belajar dari jaringan syaraf buatannya, pengendali NFNN ini mampu memperbaharui nilai aturan fuzzy, fungsi keanggotaan masukan dan fungsi keanggotaan keluaran dalam usaha memperbaiki keluaran suatu sistem kendali. Dengan demikian, pengendali NFNN ini mengurangi kerja operator ahli dalam menentukan nilai aturan-aturan fuzzy, timgsi keanggotaan masukan dan keluaran fuzzy. Hasil simulasi yang dilakukan dengan menggunakan pengendali NFNN ini diperoleh perbaikan pada rise time, settling time, dan kesalahan tunak suatu sistem yang dikendalikan."
Depok: Universitas Indonesia, 1996
S38768
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Titan Kemal Latif
"Pada masa sekarang ini perkembangan teknologi cenderung memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Salah satu dari banyak metode untuk mengembangkan teknologi yang cerdas adalah dengan menggunakan Adaptive Neuro Fuzyy Inference System. Penelitian ini dilakukan dengan menerapkan ANFIS tipe Sugeno pada data-data penelitian umum, seperti data tanaman iris dan data ionosphere, melihat efek perubahan parameter-parameter terhadap recognisinya, lalu melakukan ANFIS terhadap data citra wajah.

The technology nowadays tends to have abbility to think and to size up decision, just like us humans. One of the kind of method to enhance smart technology is by using Adaptive Neuro Fuzyy Inference System. This research is done by using ANFIS Sugeno type on general research data, such as iris plant data and ionosphere data, observing the effect of the changing parameter over the recognition, then using ANFIS on face image data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S47312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Augustinus P.
"Pembangkitan listrik hams memperhatikan pengendalian kecepatan putar turbin generator agar Iistrik yang dibangkitkan memiliki frekuensi yang stabil dan daya sinkron yang besar.
Pengendalian kecepatan putar pada turbin uap menggunakan Auromatic Generation Control (AGC) bertujuan agar response deviasi frekuensi tidak memiliki error steady-state serta mampu mengembalikan kepada kecepatan sinkronnya secepat mungkin sehingga daya sinkron sistem bertambah tinggi.
Pembahasan meliputi pemodelan sistem steam turbine-generator yang sederhana, konsep dasar Iogika fuzzy dan penerapannya sebagai pengendali. Analisis dilakukan terhadap transient stability dan steady-state strability pada sistem dengan pengendali Iogika fuzzy sebagai AGC yang mengalami gangguan (disturbance) pada beban dan tegangan. Serta unjuk kerjanya dibandingkan dengan sistem dengan pengendali PI.
Simulasi pengendali logika FLIZZY sebagai AGC dilakukan dengan bantuan perangkat lunak Simulink pada Matlab versi 5.3. Dari simulasi didapat bahwa pengendali logika Fuzzy tipe PFD sebagai AGC mampu menghilangkan error steady-state response deviasi frekuensi dengan cepat dan memiliki daya sinkron yang relatif bertambah tinggi dibandingkan pengendali PI."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Pribadi Arsyad
"Sistem penciuman elektronik dikembangkan untuk mengatasi ketergantungan terhadap penciuman manusia. Sistem penciuman elektronik ini dibangun dengan memanfaatkan algoritma fuzzy learning vector quantization (FLVQ) untuk proses klasifikasinya. Penelitian ini akan mencoba dua metode baru yang dikembangkan yaitu pemilihan bobot awal jaringan dari vektor rata-rata setiap kelas aroma dan melakukan pengenalan di ruang eigen. Berdasarkan percobaan yang dilakukan, ternyata bahwa kedua metode baru tersebut mampu meningkatkan deraja pengenalan aroma. Pada pengenalan terhadap aroma yang terdiri dari campuran 2 zat (aroma 2 campuran) dengan sistem 8 maupun 16 sensor akurasinya mencapai lebih dari 98%. Sedangkan apda pengenalan aroma yang terdiri dari campuran 3 zat (aroma 3 campuran) akurasi sistem 8 sensor sekitar 80% dan sistem 16 sensor mencapai lebih dari 94%."
2004
JIKT-4-1-Mei2004-26
Artikel Jurnal  Universitas Indonesia Library
cover
Budi Suwardoyo
"Anti Lock Brake Systems (ABS) bertujuan untuk menghasilkan seoptimal mungkin gaya pengereman, tetapi selama proses pengereman roda kendaraan tidak terkunci sehingga kendaraan tetap terkendali.
Pada pengendalian ABS, untuk rnendapatkan hasil yang optimal maka diperlukan pengendali yang mampu menjaga besar torsi optimum yang diperkenankan sebelum teljadjnya penguncian pada roda kendaraan. Torsi optimum yang dimaksud adalah torsi pengereman pada saat equilibrium point.
Pengendalian ini dihadapkan pada pennasalahan berubah-ubahnya kondisi jalan, yang mengakibatkan besarnya torsi pengereman yang diberikan harus disesuaikan dengan kondisi jalan. Agar dapat diberikan besar torsi pengereman yang sesuai di perlukan slip ratio sebagai pembanding antara kondisi jalan yang berbeda. Karena itu dibutuhkan sensor untuk mendeteksi kecepatan putar roda yang kemudian data dan sensor tersebut digunakan umuk memperoleh slip ratio.
Pada skripsi ini untuk membedakan kondisi pemaukaan jalan digunakan decision logic (metode elemen hingga). Metode elemen hingga membedakan kondisi permukaan jalan dengan cara membandingkan besar torsi pengereman yang diberikan dengan slip ratio yang terukur.
Keluaran dan metode elemen hingga merupakan masukan bagi pengendali logika fuzzy. Masukan berupa informasi kondisi permukaan jalan menyebabkan pengendali Iogika dapat memutuskan untuk memberikan sinyal kendali yang sesuai dengan kondisi pemiukaan jalan kepada servovalve sehingga torsi pengereman optimum dapat diberikan selama terjadinya proses pengereman.
Output dan simulasi berupa bentuk-bentuk grafik yang merupakan tanggapan slip ratio terhadap waktu, tanggapan torsi pengereman terhadap waktu, tanggapan kecepatan terhadap waktu sehingga dapat diamati tanggapan sistem secara keseluruhan."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39913
UI - Skripsi Membership  Universitas Indonesia Library
cover
M.R. Widyanto
"To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed.Minimum, average, and maximum values of fragrance data acquisition are used to form triangular fuzzy numbers. THen, the fuzzy similarity measure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of hidden units. In experiments, performances of the proposed method is compared with the conventional self-organized Network inspired by Immune Algorithm (SONIA) and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-15%."
2003
JIKT-3-2-Okt2003-90
Artikel Jurnal  Universitas Indonesia Library
cover
New York: McGraw-Hill, 1996
006.32 FUZ
Buku Teks  Universitas Indonesia Library
cover
Andri Fitriadi
"Navigasi merupakan hal yang sangat penting dalam setiap pelayaran kapal laut, yaitu untuk mengetahui posisi kapal dalam koordinat geografis. Pengendalian pada sistem kemudi kapal laut dimaksudkan untuk melepaskan diri dan ketergantungan kemudi kapal terhadap seorang nakhoda dan kapal laut dapat tiba di tempat tujuan dengan kesalahan posisi yang tidak terlalu besar.
Pada skripsi ini akan dibahas perbandingan dua pengendali yang akan digunakan untuk mengendalikan kemudi kapal laut, yaitu pengendali logika fuzzy dan pengendali ANFIS (Adaptive-Network-Based Fuzzy Inference System). Pengendali logika fuzzy menggunakan metoda basis aturan berdasarkan pengalaman seorang pakar (dalam hal ini nakhoda) untuk mengendalikan kemudi kapal yang diambil dari acuan[2] , sementara pengendali ANFIS merupakan pengendali neuro fuzzy yang rnenggunakan proses learning dari basis data untuk menghasilkan basis aturannya. Kedua jenis pengendali ini akan menghasilkan kinerja yang berbeda."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39917
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38420
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Rusli
Malang: Universitas Brawijaya Press, 2017
511.313 MOC d
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>