Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 134938 dokumen yang sesuai dengan query
cover
Gemilang Madyakusuma
"Sejak awal ditemukannya komputer hingga kini, manusia berinteraksi dengan komputer melalui papan ketik (keyboard). Upaya untuk memberikan kemampuan guna mengenali ucapan oleh komputer akan memperluas lingkup penggunaanya. Meciptakan komputer yang dapat mengenali ucapan manusia merupakan hal yang kompleks dan melibatkan berbagai disiplin ilmu. Dalam skripsi ini akan digrnikan perancangan sistem pengenalan ucapan untuk mengenali ke-6 vokal dalam Bahasa Indonesia dan kata dalam bahasa Indonesia dengan metoda-metoda yang sebagian besar merupakan peniruan dari fungsi (kemampuan) manusia. Metoda-metoda yang digunakan meliputi pemisahan sinyal ucapan dengan bukan ucapan (kesenyapan atau derau latar belakang). Ekstraksi ciri dengan pengkodean prediksi linear (Linear Predictive Code, LPQ yang dapat dengan baik merepresentasikan produksi suara manusia. Jaringan Saraf Tiruan ART 2 yang bersifat adaptif digunakan untuk pengenalan vokal, serta Hidden Markov Model digunakan untuk pengenalan kata karena dapat mendeteksi informasi dari masukan yang temporal."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39007
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wikky Fawwaz Al Maki
"Skripsi ini berisi tentang perbandingan dari 3 jenis algoritma VQ (Vector Quantization) yaitu Traditional K-Means Clustering, LBG (Linde, Buzo, and Gray), dan Sucessive Binary Split yang digunakan dalam proses pengenalan sinyal akustik (Suara) dari berbagai jenis ikan. Dalam proses pengenalan sinyal akustik ikan yang menggunakan HMM (Hidden Markov Model), sinyal akustik ikan yang akan dideteksi, terlebih dahulu dikuantisasi dengan menggunakan algoritma VQ.
Pada sistem pengenalan sinyal akustik ikan, sinyal akustik ikan diubah terlebih dahulu ke dalam bentuk diskrit dengan cara sampling. Sinyal diskrit ini diekstraksi agar diperoleh karakteristiknya dengan menggunakan MFCC (Mel Frequency Cepstrum Coefficient). Vektor data yang terbentuk kemudian dikuantisasi dengan menggunakan 3 jenis algoritma VQ. Pada tahap pengenalan sinyal akustik ikan (recognition) yang memanfaatkan model HMM, ketiga jenis algoritma VQ ini diteliti unjuk kerjanya berdasarkan tingkat akurasi yang diperoleh.
Berdasarkan hasil simulasi, algoritma Sucessive Binary Split merupakan algoritma paling optimum untuk sistem pengenalan sinyal akustik ikan karena memiliki tingkat akurasi tertinggi (pada ukuran codebook < 64) dengan kebutuhan kapasitas memori dan waktu komputasi (saat pembuatan codebook dan model HMM) paling kecil. Untuk memperoleh sistem pengenalan sinyal akuslik ikan dengan tingkat akurasi yang paling baik, algoritma LBG dapat digunakan dengan ukuran codebook > 128 tetapi kapasitas memori dan waktu komputasi yang dibutuhkan makin besar. Tingkat akurasi (recognition rate) pada sistem pengenalan sinyal akustik ikan yang menggunakan VQ dan HMM dapat ditingkatkan dengan memperbesar ukuran codebook, jumlah iterasi algoritma VQ, dan jumlah iterasi pada Baum Welch Algorithm."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40061
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wachid Nafian
"Pada Skripsi ini membahas tentang proses konversi ucapan menjadi tulisan, Speech-to-Text yang merupakan salah satu aplikasi dari speech recognition. Tujuan dari skripsi ini yaitu bagaimana sistem dapat mengenali sedikitnya 30 kata baik kata dasar walaupun kata jadi yang diucapkan oleh seseorang tertentu (speaker dependent) dan melihat performansi (unjuk kerja) dari sistem dengan parameter codebook dan jumlah framing yang berbeda-beda.
Simulasi dibuat dengan menggunakan program Matlab 6.5 dan metode yang digunakan yaitu Hidden Markov Model (HMM). Metode HMM ini telah banyak diapliksikan dalam teknologi speech recognition. Cara yang digunakan dalam simulasi ini yaitu mengenali kata melalui pengenalan terhadap unit katanya yaitu suku kata. Suku kata yang dijadikan sebagai sumber database sebanyak 25 buah, dan dengan menggunakan variabel ukuran codebook dan jumlah training yang berbeda-beda untuk dilihat performansi mana yang memberikan hasil pengenalan terbaik.
Dari hasil percobaan dengan simulai ternyata dengan ukuran codebook dan jumlah training yang lebih besar untuk jumlah label 25 memberikan performansi yang lebih baik dan dapat memberikan perbaikan dari kondisi sebelumnya, dalam hal ini memberikan perbaikan dari keberhasilan 8,36 % pada codebook 32 dan training 5 menjadi 81,09 % dengan menggunkan codebook 1024 dan jumlah training 40. Kata-kata yang berhasil dikenali dengan variasi dari 25 suku kata sedikitnya ada 50 kata."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39311
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Yusuf
"Pengenalan ucapan atau disebut juga speech recognition adalah suatu pengembangan teknik dan sistem yang memungkinkan perangkat system untuk menerima masukan berupa kata yang diucapkan. Teknologi ini memungkinkan suatu perangkat untuk mengenali kata yang diucapkan dengan cara merubah kata tersebut menjadi sinyal digital dan mencocokkan dengan suatu pola tertentu yang tersimpan dalam suatu perangkat. Pola tertentu yang tersimpan pada suatu perangkat sebenarnya sampel kata yang diucapkan pengguna. Salah satu algoritma yang digunakan sebagai pemodelan dasar untuk pengenalan ucapan adalah Dynamic Time Warping (DTW). DTW digunakan sebagai algoritma untuk mencocokkan pola yang dimaksud dengan mengukur dua buah sekuensial pola dalam waktu yang berbeda[7].
Dalam penelitian ini akan dibahas mengenai perancangan IC pattern matching menggunakan algoritma DTW dan diimplementasikan pada sebuah Field Programmable Gate Array (FPGA). Algoritma DTW yang digunakan merupakan pengembangan dari algoritma standar yaitu FastDTW[13]. Perancangan difokuskan pada pembuatan layout Complementary Metal Oxide Silicon (CMOS) pada skala 0,18μm dengan metode semi custom. Layout ang terbentuk baik layout untuk IC DTW maupun layout - layout gerbang logika dasar penyusun IC tersebut, dapat dilihat behavior-nya. Dengan menggunakan Computer Aided Design (CAD) Electric behavior dapat diterjemahkan dalam bahasa hardware yang dikenal dengan Very High Speed Integrated Circuit Hardware Description Language (VHSIC HDL atau VHDL). Proses verifikasi dilakukan dengan membuat prototype perangkat keras menggunakan rangkaian ADC dan FPGA Spartan-IIELC yang telah diimplementasikan VHDL dari IC DTW.

Speech recognition is also called a development of techniques and systems that enable the device system to receive input of the spoken word. This technology allowsa device to recognize words spoken in a way to change the word into a digital signal and the match with a particular pattern stored in a device. Certain patterns that are stored on a device is a spoken word sample of users. One algorithm used as a basis for modeling of speech recognition is the Dynamic Time Warping (DTW). DTW is used as an algorithm to match the pattern in question by measuring two sequential patterns in different time [7].
In this research will be discussed regarding the design of the IC pattern matching using DTW algorithm and implemented on a Field Programmable Gate Array (FPGA). DTW algorithm used is the development of a standard algorithm that is FastDTW [13]. The design focused on making the layout of Complementary Metal Oxide Silicon (CMOS) on a scale of 0.18 μm with a method of semi-custom. Formed a good layout for IC DTW and layout of the basic logic gate, we can see his behavior. By using Computer Aided Design (CAD) Electric, behavior can be translated in hardware language, known as Very High Speed Integrated Circuit Hardware Description Language (VHSIC HDL or VHDL). The verification process is done by making a prototype hardware uses a circuit of ADC and the FPGA Spartan-IIELC that have been implemented VHDL from IC DTW.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29927
UI - Tesis Open  Universitas Indonesia Library
cover
Afita Putri Lestari
"Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah.
Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.

Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process.
In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40544
UI - Skripsi Open  Universitas Indonesia Library
cover
Amalia Zahra
"Dengan adanya internet, media televisi, dan radio, data yang tersedia sangat banyak, termasuk data suara. Oleh karena itu, dibutuhkan suatu cara untuk mengorganisasikannya, yakni dengan mengubah data suara menjadi teks terlebih dahulu. Pengolahan selanjutnya cukup dilakukan terhadap teks. Proses konversi data suara menjadi teks inilah yang dikenal dengan sistem pengenalan suara (SPS) otomatis.
Saat ini, SPS untuk berbagai bahasa di dunia telah berkembang pesat, seperti Bahasa Inggris, Perancis, Jepang, Thai, dan lain-lain, sedangkan penelitian SPS untuk Bahasa Indonesia sudah dimulai, namun masih dalam tahap awal. Adanya kebutuhan akan SPS dan perkembangan SPS bahasa lain yang pesat memotivasi penulis untuk melakukan penelitian SPS untuk Bahasa Indonesia.
Fokus penelitian ini adalah pembuatan model akustik yang berkaitan erat dengan kamus fonetik yang digunakan. Oleh karena itu, penulis melakukan eksperimen menggunakan enam jenis kamus fonetik, yaitu IPA, SAMPA, ARPABET, Lestari [LEST06], Sakti [SAKT08], dan kamus yang dikembangkan oleh penulis (kamus Zahra). Eksperimen terbagi menjadi dua proses besar, yaitu pelatihan, dengan menggunakan 1.000 data suara rekaman telepon, dan pengujian terhadap 250 data suara rekaman telepon.
Hasil eksperimen menunjukkan bahwa akurasi SPS tertinggi diperoleh saat menggunakan kamus Zahra, yakni sebesar 73,5%. Dengan menggunakan kamus fonetik yang sama, pengujian terhadap 100 berkas rekaman berita RRI menghasilkan akurasi maksimum sebesar 71,6% dengan OOV (Out of Vocabulary) sebesar 8,92%. Kamus tersebut merupakan kamus fonetik yang paling tepat untuk mendefinisikan bunyi dalam Bahasa Indonesia, dengan total simbol yang digunakan adalah 33 simbol."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Saferman
"

Selama masa pandemi COVID-19, teknologi Automatic Speech Recognition (ASR) menjadi salah satu fitur yang sering digunakan pada komputer untuk mencatat di kelas online secara realtime. Teknologi ini akan bekerja dimana setiap suara yang muncul akan langsung dikenali dan dicatat pada halaman terminal. Dalam penelitian ini, model ASR Wav2Letter akan digunakan menggunakan CNN (Convolution Neural Network) dengan loss function CTC (Connectionist Temporal Classification) dan ASG (Auto Segmentation Criterion). Selama proses pembuatannya, berbagai hyperparameter acoustic model dan language model dari model ASR Wav2Letter terkait dengan implementasi batch normalization¸ learning-rate, window type, window size, n-gram language model, dan konten language model diuji pengaruh variasinya terhadap performa model Wav2Letter. Dari pengujian tersebut, ditemukan bahwa model ASR Wav2Letter menunjukkan performa paling baik ketika acoustic model menggunakan metode ASG dengan learning-rate 9 × 10−5 , window size 0.1, window type Blackman, serta 6-gram language model. Berdasarkan hasil akurasi WER CTC unggul 1,2% dengan 40,36% berbanding 42,11% dibandingkan ASG, namun jika dilihat lamanya epoch dan ukuran file model, loss function ASG memiliki keunggulan hampir dua kalinya CTC, dimana ASG hanya membutuhkan setengah dari jumlah epoch yang dibutuhkan oleh CTC yakni 24 epoch berbanding dengan 12 epoch dan ukuran file model ASG setengah lebih kecil dibandingkan CTC yakni 855,2 MB berbanding dengan 427,8 MB. Pada pengujian terakhir, model ASR Wav2Letter dengan loss function ASG mendapatkan hasil terbaik dengan nilai WER 29,30%. Berdasarkan hasil tersebut, model ASR Wav2Letter dengan loss function ASG menunjukkan perfoma yang lebih baik dibandingkan dengan CTC.


During the COVID-19 pandemic, Automatic Speech Recognition technology (ASR) became one of features that most widely used in computer to note down online class in real-time. This technology works by writing down every word in terminal from voice that is recognized by the system. ASR Wav2Letter model will use CNN (Convolutional Neural Network) with loss function CTC (Connectionist Temporal Classification) and ASG (Auto Segmentation Criterion). While developing Wav2Letter, various hyperparameter from acoustic model and language model is implemented such as batch normalization, learning rate, window type, window size, n-gram language model, and the content of language model are examined against the performance of Wav2Letter model. Based on those examination, Wav2Letter shows best performance when it uses ASG loss function learning rate 9 × 10−5 , window size 0.1, window type Blackman, and 6-gram language model. With that configuration, WER of CTC outplay ASG around 1.2% with 40.36% compare to 42,11%, but another parameter shows ASG are way more superior than CTC with less time epoch training which are 24 epoch for CTC against 12 epoch for ASG and the size of memory model shows CTC has bigger size than ASG with 855.2 MB against 427.8 MB. In the last test, ASR Wav2Letter model with ASG loss function get the best WER value around 29.3%. Based on those results, ASR Wav2Letter Model shows its best performance with ASG loss function than CTC.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qisas Tazkia Hasanudin
"

Salah satu teknologi berbasis kecerdasan buatan yang kini semakin dibutuhkan adalah ASR (Automatic Speech Recognition), atau lebih sering disebut sebagai speech-to-text. Teknologi ini memiliki potensi untuk diterapkan di berbagai bidang, salah satunya adalah mentranskripsi naskah rapat atau persidangan. Tujuan dari penelitian ini adalah untuk mengembangkan sistem transkripsi otomatis Bahasa Indonesia yang dapat berjalan secara luring dan dapat memproses masukan dari beberapa mikrofon secara bersamaan.

Penelitian ini berhasil mengembangkan sistem transkripsi otomatis dengan mengkombinasikan teknologi ASR, pemrograman Python, aplikasi word editor seperti Microsoft Word, dan komputer yang terhubung dengan banyak mikrofon. Teknologi ASR pada sistem ini terdiri dari acoustic model yang dibuat menggunakan DeepSpeech dengan metode fine-tuning dan language model yang dibuat menggunakan KenLM. Sistem transkripsi otomatis dapat dijalankan pada komputer 64-bit dengan sistem operasi Windows yang di dalamnya terdapat Microsoft Word tanpa memerlukan spesifikasi hardware minimum tertentu.
Hasil pengujian terhadap performa sistem menunjukkan bahwa sistem hanya bersifat CPU-intensive, dan ini hanya terjadi apabila seluruh pembicara berbicara pada mikrofon secara sekaligus, yang mengakibatkan tingginya jumlah thread yang aktif. Hasil pengujian terhadap acoustic model menunjukkan bahwa model tersebut dapat menghasilkan WER terbaik sebesar 73,33% dan CER terbaik sebesar 23,59% apabila dilatih menggunakan learning rate sebesar 0,01 dan dropout rate sebesar 0,3. Hasil pengujian terhadap language model menunjukkan bahwa model yang dibuat dengan dataset teks bertopik umum dan berukuran besar dapat membantu acoustic model menghasilkan WER dan CER yang lebih baik lagi, yaitu 28,76% dan 14,68%.

One of the artificial intelligence-based technologies that is increasingly needed is ASR (Automatic Speech Recognition), or more commonly referred to as speech-to-text. This technology has the potential to be applied in various fields, one of which is generating transcripts for meetings or trials. The purpose of this research is to develop an Indonesian automatic transcription system that can run offline and can process input from multiple microphones simultaneously.
This study succeeded in developing an automatic transcription system by combining ASR technology, Python programming, word editor applications such as Microsoft Word, and computers connected to multiple microphones. The ASR technology in this system consists of an acoustic model created using DeepSpeech with a fine-tuning method and a language model created using KenLM. The automatic transcription system can be run on 64-bit computers with Windows operating system that has Microsoft Word installed on it. It does not require certain minimum hardware specifications.
Test results on system performance show that the system is only CPU-intensive, and this only occurs when all participants are speaking into all microphones at once, resulting in a high number of active threads. The test results on the acoustic model show that the model can produce the best WER of 73.33% and the best CER of 23.59% when trained using a learning rate of 0.01 and a dropout rate of 0.3. The test results on the language model show that the model made with a text dataset that has a large size and no particular topic can help the acoustic model produce better WER and CER, which are 28.76% and 14.68%, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Muhammad Fanie
"Skripsi ini dibuat untuk mengenali suatu jenis kawanan ikan berdasarkan perubahan fase dengan menganalisis perubahan fase dari gelombang yang dipantulkan oleh gerakan kawanan ikan. Gelombang yang diterima dari hasil pantulan tersebut akan dikenali dengan metode Hidden Markov Model (HMM) yang telah diprogram ke DSK TMS320C6713. Perubahan fase pada masing-masing kelompok ikan disebabkan oleh perbedaan pada bentuk dan bahan permukaan ikan, kecepatan ikan, serta formasi susunan ikan dalam suatu kelompok yang strukturnya mengikuti gerakan schooling suatu kawanan ikan. Dimana setiap ikan memiliki karakteristik yang unik. Pada Tahap identifikasi dengan metode HMM tingkat pengenalan bias mencapai 100% dengan menggunakan ukuran codebook 128 bit dan jumlah pelatihan 15 sample dan 7 state HMM.

This final project was made to recognize the kind of fishes from their phase changing by analyzing phase changing of the reflected waves that received from the fishes movement. The reflected waves was recognized using the Hidden Markov Model which was programmed in the DSK TMS320C6713. Phase changing in the group of fishes was caused by the difference of the fish form, the surface of the fish, the speed of the fish movement, also the formation of fish in a group that make a schooling movement. Because of that, many group of fishes could have unique characteristic. In the recognition process with Hidden Markov Model (HMM) could reach 100% accuracy using the codebook size of 128 bit, training samples of 15 data and 7 states of HMM."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40527
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohamad Irfan Fanani
"Penelitian ini membahas tentang pengembangan sistem pencarian kata pada terjemahan Al-Qur’an berbasis website dengan menggunakan Node.JS, Google Speech-to-Text API, dan alquran.cloud API sebagai komponen utamanya. Masukan sistem berupa suara yang pada proses selanjutnya diubah menjadi teks oleh Google Speech-to-Text API lalu teks digunakan sebagai kata kunci untuk mencari terjemahan menggunakan alquran.cloud API. Keluaran sistem berupa tampilan pada halaman website yang berisikan tabel daftar nama surat dan nomor ayat yang mengandung kata kunci. Pembuatan website menggunakan HTML, CSS, dan fungsi JavaScript untuk menyatukan web API dalam satu website. Fungsi JavaScript yang dibuat untuk melakukan fetch data dan menampilkan tabel keluaran dieksekusi di client, sedangkan fungsi untuk masukan sinyal suara dan transkripsi dieksekusi di server. Hasil percobaan menghasilkan akurasi sebesar 86% pada hasil transkripsi Google Speech-to-Text API yang digunakan pada sistem. Akurasi pada penguji perempuan lebih tinggi 14% dibanding penguji laki-laki dengan akurasi penguji perempuan sebesar 92%. Diamati juga waktu dalam kecepatan proses transkripsi, kecepatan fetch data dari alquran.cloud API, dan kecepatan sistem dalam menampilkan keluaran.

This study discusses the development of a word search system for website-based translation of the Qur'an using Node.JS, Google Speech-to-Text API, and alquran.cloud API as the main components. The system input is in the form of voice which in the next process is converted into text by the Google Speech-to-Text API and then the text is used as keywords to search for translations using the alquran.cloud API. The system output is in the form of a display on a website page that contains a table listing letter names and verse numbers containing keywords. Website are created using HTML, CSS, and JavaScript functions to unify the web API in one website. JavaScript functions that are created to fetch data and display an output table are executed on the client, while functions for voice signal input and transcription are executed on the server. The experimental results yield an accuracy of 86% on the transcription results of the Google Speech-to-Text API used in the system. The accuracy of the female examiners was 14% higher than the male examiners with the female examiners' accuracy of 92%. Also observed is the speed of the transcription process, the speed of fetching data from the alquran.cloud API, and the speed of the system in displaying the output."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>