Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 176002 dokumen yang sesuai dengan query
cover
Adi Saputra
"Luasnya aplikasi aluminium didalam kehidupan sehari-hari memunculkan suatu tantangan serta peluang baru yaitu bagaimana mempertahankan dan meningkatkan kualitas dari produk-produk aluminium, sehingga produk-produk tersebut mempunyai umur pakai yang lama serta tahan terhadap abrasi, korosi, ramah lingkungan serta memiliki nilai estetik didalam pemakaiannya. Suatu metode yang digunakan untuk meningkatkan ketahanan aluminium terhadap abrasi dan korosi yaitu anodizing. Dimana metode ini merupakan proses elektrokimia yang menghasilkan lapisan oksida yang tipis pada permukaan logam yang dioksidasi dengan menggunakan arus listrik melalui suatu media elektrolit. Lapisan oksida hasil anodizing akan memberikan karakteristik permukaan yang dapat direkayasa; kekerasan, ketahanan abrasi dan korosi, serta konsisten dalam ketebalan permukaan. Metode anodizing merupakan metode yang relatif mudah dan murah untuk suatu proses rekayasa permukaan dan dapat diwarnai untuk tujuan dekorasi.
Salah satu proses anodizing yang digunakan adalah anodizing tipe II dengan media larutan elektrolit berupa asam sulfat 15% berat dengan pH: 2, tegangan 15 Volt, rapat arus 1,83 A/dm2. Variabel yang digunakan dalam penelitian ini adalah variasi temperatur elektrolit yaitu 28ºC, 23ºC, 18ºC, 13ºC dan 9ºC, sehingga diharapkan dapat diketahui pengaruh dari variasi tersebut terhadap nilai kekerasan, dan ketebalan dari lapisan oksida aluminium.
Hasil penelitian menunjukkan bahwa dengan penurunan temperatur dari temperatur 28ºC, 23ºC, 18ºC, 13ºC hingga 9ºC menyebabkan nilai kekerasan lapisan oksida aluminum meningkat, yaitu masing-masing sebesar 71μHV, 100 μHV, 110 μHV, 128 μHV. dan 220 μHV. Dengan ketebalan lapisan oksida non-etsa pada temperatur 28ºC, 18ºC dan 9ºC dicapai masing-masing sebesar 24μm, 17 μm, 11 μm. Hasil yang paling optimum dicapai pada temperatur 9_C dengan nilai kekerasan tertinggi 220 μHV dan ketebalan lapisan oksida mencapai 11 μm."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41653
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryo Mulyono
"Aluminium merupakan salah satu material logam yang banyak digunakan, diaplikasikan dan dikembangkan pada berbagai macam produk otomotif, contohnya piston. Piston sebagai salah satu komponen otomotif yang cukup penting pada mesin kendaraan bermotor memerlukan sifat ketahanan abrasi dan ketahanan korosi yang baik. Salah satu metode perlakuan akhir yang dapat digunakan untuk mendapatkan sifat ketahanan abrasi dan korosi yang baik adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium akan diubah menjadi lapisan aluminium oksida yang amat keras dan tahan korosi. Salah satu parameter terpenting yang amat menentukan karakteristik permukaan hasil anodisasi adalah potensial. Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya potensial anodisasi terhadap kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada permukaan logam paduan aluminium silikon. Variabel yang digunakan dalam penelitian kali ini adalah variasi besarnya tegangan yaitu 9 Volt, 11 Volt, 13 Volt dan 15 Volt. Hasil penelitian kemudian menunjukkan bahwa dengan meningkatnya tegangan anodisasi (yaitu dari 9, 11, 13 dan 15 Volt) maka kekerasan lapisan oksida rata-rata yang ditunjukkan dari hasil uji kekerasan mikro akan semakin meningkat pula. Ynitudari 109 uHV pada potensial 9 Volt, 116 uHVpada potensial 11 Volt, 136 fiHV potensial 13 V, hingga 153 uHV pada potensial 15 Volt. Peningkatan juga dialami oleh ketebalan lapisan oksida rata-rata yang dihasilkan, yaitu sebesar 13 _m pada potensial anodisasi 9 Volt, 15 _m pada potensial anodisasi 11 Volt, 17 _rn pada potensial anodisasi 13 Volt, hingga 19 _m pada potensial anodisasi 15 Volt."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41802
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reynaldo Putrayadi
"Magnesium (Mg) merupakan logam ringan yang memiliki beragam aplikasi, termasuk dalam industri otomotif dan sebagai bahan implan biodegradable. Meskipun penting, kelemahan utama magnesium adalah ketahanan korosinya yang rendah terutama dalam lingkungan yang mengandung klorida. Oleh karena itu, perbaikan sifat korosi magnesium diperlukan melalui rekayasa permukaan. Salah satu metode yang efektif dalam rekayasa permukaan magnesium adalah metode plasma electrolytic oxidation (PEO). Penelitian ini bertujuan untuk memahami pengaruh perbedaan kation yang digunakan sebagai elektrolit untuk PEO terhadap sifat mekanik dan ketahanan korosi lapisan PEO pada paduan magnesium AZ31. Elektrolit yang dimaksud adalah KOH dan NaOH. Dalam penelitian ini, dilakukan proses PEO pada paduan magnesium AZ31 menggunakan larutan basa seperti KOH, NaOH, dan campuran KNa. Proses ini menggunakan rapat arus 1000 A/m2 pada suhu 30ºC dalam waktu 10 menit. Sampel yang dihasilkan kemudian dianalisis menggunakan beberapa metode, termasuk pengamatan morfologi dan komposisi dengan SEM-EDS, uji mekanik untuk mengukur ketahanan aus dan kekerasan, serta eksperimen elektrokimia dengan EIS dan PDP. Larutan KOH, NaOH, dan KNa dapat meningkatkan ketahan korosi dan sifat mekanik lapisan PEO pada paduan magnesium AZ31. Data uji korosi menunjukkan bahwa larutan KOH memiliki tingkat korosi paling tinggi dibandingkan dengan NaOH dan KNa dengan nilai rapat arus dan resistansi polarisasi sebesar 7,31 × 10-5 A/cm2 dan 280 Ω.cm2 . Uji mekanik mengindikasikan peningkatan kekerasan dan ketahanan aus pada sampel yang diuji dengan larutan campuran KNa dengan nilai kekerasan sebesar 71 Hv dan nilai spesifik abrasi sebesar 9,07 × 10-6 mm3 /mm. Hal ini disebabkan oleh nilai at% dari unsur O pada elektrolit KNa lebih tinggi dibandingkan elektrolit NaOH dan KOH.

Magnesium (Mg) is a lightweight metal with diverse applications, including the automotive industry and as a material for biodegradable implants. Despite its significance, magnesium's primary weakness lies in its low corrosion resistance, particularly in chloride-containing environments. Therefore, improving magnesium's corrosion resistance is essential through surface engineering. One effective method for surface engineering of magnesium is the Plasma Electrolytic Oxidation (PEO) technique. This research aims to understand the influence of different cations used as electrolytes for PEO on the mechanical properties and corrosion resistance of PEO coatings on the AZ31 magnesium alloy. The electrolytes in focus are KOH and NaOH. In this study, the PEO process was conducted on the AZ31 magnesium alloy using basic solutions such as KOH, NaOH, and a mixture of KNa. The process employed a current density of 1000 A/m2 at a temperature of 30ºC for 10 minutes. The produced samples were then analyzed using various methods, including morphology and composition observation with SEM-EDS, mechanical testing for wear resistance and hardness measurement, as well as electrochemical experiments using EIS and PDP. KOH, NaOH, and KNa solutions successfully enhanced the corrosion resistance and mechanical properties of PEO coatings on the AZ31 magnesium alloy. Corrosion test data indicated that the KOH solution exhibited the highest corrosion rate compared to NaOH and KNa, with corrosion current density and polarization resistance values of 7,31 × 10-5 A/cm2 and 280 Ω.cm2 , respectively. Meanwhile, mechanical tests indicated improved hardness and wear resistance in samples treated with the KNa mixed solution, showing a hardness value of 71 Hv and specific abrasion value of 9,07 × 10-6 mm3 /mm. This can be attributed to the higher atomic percentage of oxygen in the KNa electrolyte compared to NaOH and KOH."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Anggraeni
"Logam ringan aluminium (Al) dan paduannya memiliki sifat mekanik yang cocok digunakan dalam industri penerbangan, perkapalan, dan otomotif. Proteksi terhadap permukaan logam Al diperlukan untuk meningkatkan ketahanan korosi dan aus. Plasma Electrolytic Oxidation (PEO) menghasilkanlapisan oksida tebal dan kristalin sehingga dapat meningkatkan ketahanan korosi dan ketahanan aus. Karakteristik mekanik dan korosi lapisan oksida hasil PEO sangat bergantung pada ketebalan dan morfologi lapisan yang ditentukan oleh waktu dan karakteristik plasma. Dalam penelitian ini, PEO dilakukan pada paduan Al seri 7075-T651 dengan menggunakan elektrolit campuran 30 g/lNa2SiO3, 30 g/l KOH, 30 g/l Na3PO4, dan 20 g/l TEA pada rapat arus konstan 200 A/m2dengan variasi waktu 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi dengan menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Open Circuit Potential (OCP), Electrochemical Impedence Spectroscopy (EIS), dan juga Potentiodynamic Polarization (PDP). Sifat mekanik lapisan PEO diuji dengan metode Vickers microhardness, dan ketahanan aus diuji menggunakan metode Ogoshi. Unsur P, Si, O merupakan lapisan perlindungan terhadap korosi semakin meningkat seiring berjalannya waktu. Hasil XRD menunjukkan adanya lapisan Al2O3, SiO2, dan AlPO4. Hasil uji elektrokimia PDP dan EIS menunjukkan bahwa PEO 15 menit menunjukkan kinerja korosi yang paling baik, memiliki rapat arus korosi terendah sebesar 1,20 × 10-7 A.cm−2 dan hambatan tertinggi sebesar 706,8 Ω.cm2 dan 1,65 × 104 Ω.cm2. Tetapi, uji mekanik menunjukkan bahwa PEO 15 menitmemiliki tingkat keausan yang tinggi sebesar 20,8 mm3/mm dan kekerasan sebesar 143 HV. Sedangkan PEO 20 menit nilai keausan lebih rendah sekitar 8 mm3/mm dan kekerasan sebesar 159,4 HV serta sudut kontak sebesar 78˚.

The lightweight metal aluminum (Al) and its alloys exhibit mechanical properties suitable for use in the aerospace, shipping, and automotive sectors. Surface protection of Al metal is necessary to enhance corrosion and wear resistance. Plasma Electrolysis Oxidation (PEO) produces thick and crystalline oxide layers, thus improving high corrosion resistance and high wear resistance. The mechanical and corrosion characteristics of PEO oxide layers greatly depend on the thickness and morphology of the layers determined by time and plasma characteristics. In this study, PEO was performed on 7075-T651 series Al alloy using a mixed electrolyte of 30 g/l Na2SiO3, 30 g/l KOH, 30 g/l Na3PO4, and 20 g/l TEA at a constant current density of 200 A/m2 with time variations of 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the crystal phase composition, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior on the samples was evaluated through electrochemical tests, namely Open Circuit Potential (OCP), Electrochemical Impedance Spectroscopy (EIS), and Potentiodynamic Polarization (PDP). The mechanical properties of PEO layers were tested using the Vickers microhardness method, and wear resistance was tested using the Ogoshi method. The protective layer against corrosion increases over time with elements P, Si, O. XRD results show the presence of Al2O3, SiO2, and AlPO4 layers. PDP and EIS electrochemical test results indicate that PEO for 15 minutes shows the best corrosion performance, with the lowest corrosion current density of 1.20 × 10-7 A.cm−2 and the highest impedance of 706.8 Ω.cm2 and 1,65 × 104 Ω.cm2. However, mechanical tests show that the 15-minute PEO has a high wear rate of 20.8 mm3/mm and a hardness of 143 HV. Meanwhile, the 20-minute PEO has a lower wear rate of about 8 mm3/mm and a hardness of 159.4 HV, as well as a contact angle of 78˚."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deva Rifa Nurgantini
"Aluminium (Al) adalah logam ringan dengan massa jenis 2,7 g/cm3. Untuk melindungi permukaan paduan Al dari lingkungan korosif dan abrasif, dibutuhkan rekayasa permukaan seperti PEO. Karakteristik lapisan oksida hasil PEO dipengaruhi oleh arus dan durasi proses. Penelitian ini bertujuan untuk menganalisis evolusi morfologi dan pengaruhnya terhadap karakteristik mekanik dan ketahanan korosi lapisan PEO. PEO diaplikasikan pada paduan Al 7075-T651 menggunakan elektrolit 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 dengan rapat arus konstan 200 A/m2. Waktu proses PEO divariasikan 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Potentiodynamic Polarization (PDP) dan Electrochemical Impedence Spectroscopy (EIS). Hasil analisis XRD mengindikasikan bahwa lapisan PEO bersifat amorf. Konsentrasi oksigen dalam lapisan yang dideteksi dengan EDS meningkat seiring bertambahnya durasi proses PEO sesuai dengan peningkatan ketebalan lapisan. Hasil uji elektrokimia PDP dan EIS menunjukkan sampel PEO 15 menit memiliki ketahanan korosi terbaik dengan nilai rapat arus korosi terendah sebesar 2,28 dan nilai hambatan tertinggi sebesar 1,038 dan 1,123. Hasil uji mekanik menunjukkan PEO 10 menit memiliki nilai keausan tertinggi sebesar dan nilai kekerasan sebesar 129,8 HV; PEO 15 menit memiliki nilai keausan sebesar dan nilai kekerasan sebesar 131,8 HV; dan PEO 20 menit memiliki nilai keausan terendah yaitu dan nilai kekerasan tertinggi yaitu 142 HV yang menunjukkan bahwa sampel dengan durasi lebih lama dapat menghasilkan sifat mekanik yang lebih unggul

Aluminium (Al) is a lightweight metal with a density of 2,7 g/cm3. To protect the surface of Al alloys from corrosive and abrasive environments, surface engineering techniques such as Plasma Electrolytic Oxidation (PEO) are required. The characteristics of the PEO-derived oxide layers are influenced by the current and process duration. This study aims to analyze the morphological evolution and its impact on the mechanical properties and corrosion resistance of PEO layers. PEO was applied to Al 7075-T651 alloy using an electrolyte of 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 with a constant current density of 200 A/m2. The PEO process duration was varied at 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the composition of crystalline phases, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior was evaluated through electrochemical tests, namely Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS). XRD analysis indicated that the PEO layers were amorphous. The oxygen concentration in the detected layers using EDS increases with the duration of the PEO process, in line with the increase in layer thickness. Electrochemical tests PDP and EIS showed that the PEO 15 minute sample exhibited the best corrosion resistance with the lowest corrosion current density of 2,28 and the highest resistance values of 1,038 and 1,123. Mechanical test results indicated that the PEO 10 minute sample had the highest wear resistance of and a hardness value of 129,8 HV; PEO 15 minute sample had a wear resistance of and a hardness value of 131,8 HV; and PEO 20 minute sample had the lowest wear resistance of and the highest hardness value of 142 HV, suggesting that longer process durations produce superior mechanical properties."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Itang Tri Biyanto
"Aluminium (Al) adalah logam yang memiliki ketahanan korosi serta sifat mekanik yang baik. Terdapat beberapa paduan aluminium, salah satunya paduan aluminium seri 7075-T651 (AA7075-T651), paduan ini memiliki ketahanan korosi yang lebih baik dikarenakan memiliki paduan utama seng (Zn) didalamnya. Untuk mengoptimalkan sifat unik yang dimiliki AA7075-T651 dilakukan rekayasa material dengan metode Plasma Electrolytic Oxidation (PEO). Dalam proses pengoptimalannya, variasi rapat arus dilakukan untuk melihat arus yang paling optimal digunakan dalam PEO untuk AA7075-T651. PEO dilakukan menggunakan elektrolit 30 g/l + 30 g/l KOH + 30 dengan waktu selama 15 menit. Rapat arus digunakan dengan variasi 200 A/m2, 300 A/m2, dan 400 A/m2. Pengamatan permukaan plasma yang terbentuk dilakukan karakterisasi menggunakan Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) dan Optical Microscope (OM). Selanjutnya, lapisan hasil PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal. Uji elektrokimia dilakukan untuk mengetahui ketahanan korosi paduan setelah perlakuan PEO. Uji kekerasan dilakukan menggunakan alat Vickers microhardness machine dan untuk mengetahui ketahanan aus dilakukan uji aus menggunakan alat Ogoshi. Unsur P, Si, dan O adalah lapisan pelindung terhadap korosi. Hasil XRD menunjukan adanya lapisan Al2O3 dan AlPO4. Hasil PDP dan EIS menunjukan PEO300 yang memiliki rapat arus korosi sebesar 4,18 × 10-8 A.cm−2 . Untuk ketahanan optimum dalam ketahanan aus dimiliki oleh PEO300 yang memiliki ketahanan aus terbesar, yaitu sebesar 2,9 mm3/mm, sedangkan nilai kekerasan tertinggi dimiliki oleh PEO200 sebesar 156 HV. Ketebalan yang paling tebal dimiliki oleh PEO400 yang memiliki ketebalan 18,11 ± 1,13 um.

Aluminum (Al) is a metal known for its corrosion resistance and good mechanical properties. There are several aluminum alloys, one of which is the 7075-T651 series aluminum alloy (AA7075-T651). This alloy has better corrosion resistance due to its main alloying element, zinc (Zn). To optimize the unique properties of AA7075-T651, material engineering is conducted using the Plasma Electrolytic Oxidation (PEO) method. In the optimization process, variations in current density are applied to determine the most optimal current for PEO of AA7075-T651. PEO is carried out using an electrolyte of 30 g/l + 30 g/l KOH + 30 for 15 minutes. The current densities used are varied at 200 A/m2, 300 A/m2, dan 400 A/m2. Surface observations of the formed plasma are characterized using Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) and Optical Microscope (OM). Subsequently, the samples are characterized using an X-Ray Diffractometer (XRD) to analyze the crystal phase composition. The PEO layer undergoes electrochemical testing to determine the corrosion resistance of the engineered layer. Hardness testing is conducted using a Vickers microhardness machine, and wear resistance is assessed using an Ogoshi wear testing machine. The elements P, Si, and O form a protective layer against corrosion. The XRD results show the presence of Al2O3 and AlPO4 layers. The PDP and EIS results indicate that PEO300 has a corrosion current density of 4,18 × 10-8 A.cm−2. The optimal wear resistance is exhibited by PEO300, with the highest wear resistance of 2,9 mm^3/mm, while the highest hardness value is found in PEO200 at 156 HV. The thickest layer is observed in PEO400, with a thickness of 18,11 ± 1,13 um."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Medio Feby Fitriana
"Magnesium (Mg) merupakan logam ringan dan dapat diserap tubuh melalui proses degradasi atau bersifat biodegradable. Namun Magnesium dan paduannya mengalami degradasi yang sangat cepat di dalam lingkungan fisiologis akibatnya kekuatan mekanik dari implan akan menurun. Untuk meningkatkan ketahanan korosi dari paduan magnesium dapat dilakukan dengan metode anodizing. Lapisan oksida yang dihasilkan dari proses anodizing memiliki banyak retakan dan pori pada permukaannya. Retakan dan pori ini dapat ditutup melalui metode sealing beeswax-colophony. Proses anodizing dilakukan pada tegangan konstan 5 volt dalam elektrolit 0.5 M Na3PO4 pada suhu 30°C ± 1°C dengan variasi waktu 10, 20, dan 30 menit. Pada waktu 10, 20, dan 30 menit terukur tebal lapisan 6, 14, dan 16 μm. Optimasi waktu anodizing dihasilkan pada anodizing 20 menit. Untuk mengetahui laju korosi paduan magnesium yang telah di anodizing dan sealing dilakukan dengan uji hilang berat (invitro) selama 14 hari dalam larutan 0,9% NaCl pada suhu 37°C. Hasil uji hilang berat divalidasi dengan uji potentiodynamic polarization. Hasil uji hilang berat yang menunjukkan laju korosi dari substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut yaitu 7,91; 6,26; 5,0; 6,06; dan 3,30 mmpy. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi yang diperlihatkan oleh kenaikan potensial korosi untuk substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut adalah -1.49, -1.57, -1.54, -1.43, dan -1,17 VAg/AgCl dan penurunan arus korosi berturut-turut 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5 , dan 3.19x10-8 A/cm2. Hasil tersebut menunjukkan bahwa perlakuan anodizing dan sealing dengan beeswax-colophony terbukti dapat meningkatkan ketahanan korosi paduan AZ31 2 kali lipat.

Magnesium (Mg) is the light metals and absobable materials by the human body through a process of degragradation known as biodegradable. However, Mg and its alloys has a rapid corrosion rate in physiological environtment causes reduction of mechanical properties of implants. Anodizing is widely used to increase corrosion resistance of magnesium alloys. The oxide layer produced while anodizing process has many cracks and porous on its surface. Cracks and porous could covered by beeswax-colophony sealing method. The anodization process was carried out at constant voltage 5 volt in electrolyte of 0.5 M Na3PO4 at 30 ° C ± 1 ° C with variations of time 10, 20, and 30 minutes. The thickness of layer was measured at 10, 20, and 30 minutes are 6, 14, 16 μm respectively. Anodizing time optimization was obtained at 20 minutes. to determine the corrosion rate of anodized and sealed magnesium alloy was carried out by in-vitro test for 14 days on 0.9% NaCl solution at 37 ° C. The results of the weight loss test were validated by potentiodynamic polarization test. The weight loss test results exhibits the rate of corrosion of the substrate, anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing are 7.91, 6.26, 5.0, 6.06, and 3.30 mmpy respectively. The results of corrosion on AZ31 show by increased corrosion potential, -1.49, -1.57, -1.54, -1.43, and -1.17 VAg/AgCl and decreased corrosion currents, 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5, and 3.19x10-8 A/cm2 on the substrate; anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing. These results prove anodizing and coatings increase corrosion resistance of AZ31 twice.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asweda Luluk Saptaningrum
"Magnesium dan paduannya telah digunakan di berbagai industri karena memiliki rasio kekuatan terhadap berat yang tinggi, modulus elastisitas dan densitas yang rendah, serta sifat mampu bentuk dan manufaktur yang baik. Namun, magnesium memiliki ketahanan korosi dan aus yang rendah. Untuk mengatasi hal tersebut, diperlukan rekayasa permukaan pada paduan magnesium. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida yang dapat meningkatkan ketahanan korosi dan aus paduan magnesium. Jenis elektrolit yang digunakan karakteristik dan waktu hidup plasma. Dalam penelitian ini, proses PEO dilakukan pada paduan AZ91 dalam elektrolit berbasis campuran silikat, fosfat, dan hidroksida yaitu Na3PO4, Na2SiO3, dan KOH. Proses PEO dilakukan dengan menggunakan rapat arus konstan sebesar 533 A/m2 selama 10 menit. Parameter proses tersebut dipilih untuk memperlama waktu hidup plasma. Pada penelitian sebelumnya, plasma hanya dapat hidup selama 2 menit. Hasil analisis SEM-EDS menunjukkan bahwa lapisan PEO yang dihasilkan memiliki dua tipe warna, yaitu abu-abu dan putih dengan morfologi dan komposisi berbeda. Bagian putih memiliki morfologi yang tidak seragam dan banyak retakan, dibandingkan dengan bagian abu-abu yang memiliki sedikit pori dan retakan. Ketebalan lapisan yang terbentuk sebesar 53 ± 3 μm. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristal dan amorf Mg2SiO4, Mg3(PO4)2, dan MgO pada lapisan PEO. Hasil tersebut dikonfirmasi oleh hasil analisis EDS dengan terdeteksinya unsur-unsur terkait. Bagian putih memiliki konsentrasi Si yang lebih tinggi dibandingkan bagian abu-abu. Bagian abu-abu memiliki daya tahan abrasi yang lebih tinggi dibandingkan lapisan putih yang ditunjukkan dari nilai spesifikasi abrasinya, yaitu 0,684 × 10-5 mm3/mm dibanding 1,48 × 10-5 mm3/mm. Hasil karakterisasi dan uji mekanik menunjukkan lapisan PEO yang terbentuk tebal dan memiliki ketahanan aus yang baik karena plasma dapat hidup sampai 10 menit.

Magnesium and its alloys have been used in various industries due to their high strength-to-weight ratio, low modulus of elasticity and density, as well as good formability and manufacturability. However, magnesium has low corrosion resistance and wear resistance. To overcome these challenges, surface engineering is required for magnesium alloys. Plasma Electrolytic Oxidation (PEO) produces a ceramic oxide layer that can enhance the corrosion resistance and wear resistance of magnesium alloys. The type of electrolyte used determines the characteristics and lifetime of the plasma. In this study, the PEO process was performed on the AZ91 alloy using an electrolyte based on a mixture of silicate, phosphate, and hydroxide, namely Na3PO4, Na2SiO3, and KOH. The PEO process was carried out using a constant current density of 533 A/m2 for 10 minutes. These process parameters were chosen to prolong the plasma lifetime. In previous studies, the plasma could only last for 2 minutes. The results of SEM-EDS analysis showed that the produced PEO layer had two different colors, namely gray and white, with different morphologies and compositions. The white part exhibited non-uniform morphology and numerous cracks compared to the gray part, which had fewer pores and cracks. The thickness of the formed layer was measured to be 53 ± 3 μm. Based on XRD phase analysis, crystal and amorphous phases of amorf Mg2SiO4, Mg3(PO4)2, and MgO were detected in the PEO layer. These findings were confirmed by EDS analysis, which detected related elements. The white part had a higher concentration of Si compared to the gray part. The gray part exhibited higher abrasion resistance compared to the white layer, as indicated by the abrasion specification values, which were 0,684 × 10-5 mm3/mm and 1,48 × 10-5 mm3/mm, respectively. The characterization and mechanical testing results indicated that the formed PEO layer was thick and had good wear resistance due to the plasma lifetime reaching 10 minutes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zikri Desriano Putra
"Plasma electrolytic oxidation (PEO) merupakan metode rekayasa permukaan logam untuk menghasilkan lapisan oksida yang keras dan tahan korosi. Sifat lapisan oksida yang dihasilkan bergantung pada jenis substrat dan komposisi larutan yang digunakan. Dalam penelitian ini, PEO dilakukan pada substrat AZ31B pada kondisi rapat arus tetap 800 A/m2 dan suhu 30°C. Larutan terdiri atas campuran garam basa dan etanol. Larutan A terdiri atas campuran 0,5 M Na3PO4 dan etanol dengan komposisi 9:1, larutan B campuran Na3PO4, NaOH dan Na2CO3 dengan komposisi 8:1:1, larutan C, D, dan E campuran Na3PO4, NaOH, Na2CO3, dan etanol dengan komposisi 7:1:1:1, 6:1:2:1, dan 6:2:1:1. Morfologi dan komposisi lapisan oksida diamati dengan scanning electron microscope dan energy dispersive spectroscopy (SEM – EDS). Komposisi kristal dianalisis dengan x-ray diffraction (XRD). Nilai kekerasan mekanik diuji dengan mesin microVickers Hardness. Perilaku korosi sampel diuji dengan metode electrochemical impedance spectroscopy (EIS) dan potentiodynamic polarization (PDP). Etanol di dalam larutan tidak mempengaruhi morfologi dan komposisi coating. Semua coating memiliki kandungan fasa kristal Mg3(PO4)2 pada puncak 29° hingga 35°. Nilai kekerasan coating yang terbentuk di larutan A, B, C, D, dan E adalah 451,8; 388; 237; 156,8; 158,4 HV. Nilai kekerasan yang rendah pada coating C, D, dan E disebabkan oleh rendahnya konsentrasi Na3PO4 yang menurunkan populasi plasma selama proses coating. Selain itu, kehadiran ion karbonat di dalam larutan mentriger peningkatan pori di dalam coating. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi dua orde dibanding substrat. Penambahan etanol ke dalam larutan cenderung menurunkan sedikit ketahanan korosi coating.

Plasma Electrolytic Oxidation (PEO) is a method of engineering metal surface treatment to produce a hard and corrosion-resistant oxide layer. The result properties of oxide layer depend on type of substrate and composition solution was used. PEO process is carried out a constant current 800 A/m2 at temperature 30℃. The solution composed of mixture alkaline salts and ethanol. Solution A mixture of 0,5 M Na3PO4 and ethanol with composition of 9:1, solution B a mixture Na3PO4, NaOH and Na2CO3 with composition of 8:1:1, solution C, D, and E a mixture of Na3PO4, NaOH and Na2CO3 with ethanol with composition of 7:1:1:1; 6:1:2:1; and 6:2:1:1. Morphology and composition of the oxide layer were observed by scanning electron microscope and energy dispersive spectroscopy (SEM – EDS). The crystal composition was analyzed by x-ray diffraction (XRD). The value of mechanical hardness was tested with a microVickers Hardness machine. The corrosion behavior of the samples was tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. The presence of ethanol in the solution didn’t affect morphology and composition of coating. All coatings contain Mg3(PO4)2 crystal phase at peak 29° to 35°. The hardness value of coating formed in solution A, B, C, D and E is 451.8; 388; 237; 156.8; 158.4 HV. The low hardness values in coatings C, D, and E were caused by the low concentration of Na3PO4 which reduced plasma population during the coating process. In addition, the presence of carbonate ions in the solution triggers an increase in the pores in the coating. The results of the polarization test showed can increase corrosion resistance of two orders compared to substrate. Addition of ethanol to solution tends to slightly lower the corrosion resistance of coating."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risdianto
"Salah satu elemen penting dari suatu komponen otomotif adalah kepala piston yang terbuat dari alumunium. Pada aplikasinya kepala piston mengalami gesekan yang dinamis sehingga memerlukan sifat ketahanan abrasi dan ketahanan korosi yang tinggi. Sifat ketahanan abrasi dan ketahanan korosi dari kepala piston akan berpengaruh terhadap umur pakainya. Salah satu metode perlakuan akhir yang dapat digunakan untuk mendapatkan sifat ketahanan abrasi dan korosi yang baik adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium akan diubah menjadi lapisan aluminium oksida (Al2O3) yang amat keras dan tahan korosi. Salah satu parameter terpenting yang amat menentukan karakteristik permukaan hasil anodisasi adalah jenis elektrolit. Penelitian kemudian dilakukan untuk memahami pengaruh dari jenis elektrolit yang digunakan pada proses anodisasi terhadap kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada permukaan logam paduan aluminium silikon. Variabel yang digunakan dalam penelitian kali ini adalah variasi jenis elektrolit yaitu H2SO4, NaOH, H2C2O4 dan H3PO4 Hasil penelitian kemudian menunjukkan adanya perbedaan kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada anodisasi di elektrolit H2SO4, NaOH, H2C2O4 dan H3PO4 yang disebabkan oleh perbedaaan derajat dissosiasi dan konduktivitas ion dari tiap larutan. Berdasarkan pengujian kekerasan mikro terhadap lapisan oksida didapatkan nilai kekerasan yaitu 401 _HV pada elekrolit H2SO4, 125 _HV pada elektrolit NaOH, 151 _HV pada elekrolit H2C2O4, dan 1288 _HV pada elekrolit H3PO4. Berdasarkan pengujian ketebalan terhadap lapisan oksida didapatkan nilai ketebalan yaitu 17 _m pada elekrolit H2SO4 , 3 _m pada elektrolit NaOH , 4 _m pada elekrolit H2C2O4 , dan 7 _m.pada elekrolit H3PO4.

One of important element from automotive component is head of piston that made from alumunium.Head of piston in application experience dinamics friction show that needs high abrasive and corrosion resistance. The properties of abrassive resistance and corrosion resistance from head of piston will influence for it life time. One of final treatment methode that can used for getting good abrasive and corrosive resistance is anodizing. In this anodizing process, the alumunium surface will be changed in to alumunium oxide (Al2O3) that very hard and good corrosion resistance. One of the most important factor to determine the result of surface characteristic in anodizing are electrolyte types. This research was then conduct to understand influence from difference electrolyte that used in this process to hardness and thickness from oxide layer that resulted in the surface of alluminiun silicon alloy. The variabel that used in this research from the variation of kinds electrolyte which is H2SO4, NaOH, H2C2O4 dan H3PO4. The result shows that are difference hardness and thickness from the oxide layer in this anodizing methode in H2SO4, NaOH, H2C2O4 and H3PO4 electrolyte, were caused by the diffrence of dissociation degree and ion conductivity from each solution. The hardness value from this oxide layer, based on microhardness testing, the result are 401 _HV in H2SO4, 125 _HV in NaOH electrolyte, 151 _HV in H2C2O4 electrolyte, and 1288 _HV in H3PO4 electrolyte. And then the thickness value from oxide layer based on microhardness testing, the result are 17 _m in H2SO4 electrolyte , 3 _m in NaOH electrolyte, 4 _m in H2C2O4 electrolyte , and 7 _m in H3PO4 electrolyte."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41665
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>