Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154070 dokumen yang sesuai dengan query
cover
Fuad Sulaimy
"Lapisan (coating) pada cetakan pengecoran aluminium berperan penting dalam menentukan kualitas produk cor. Hal ini semakin penting untuk komponen piston yang diharuskan memiliki tingkat kepresisian yang tinggi. Salah satu faktor yang menentukan kualitas lapisan cetakan tersebut adalah ketebalannya.
Penelitian ini mempelajari hubungan antara ketebalan lapisan terhadap karakteristik lapisan pada cetakan piston aluminium. Variabel ketebalan lapisan yang digunakan adalah 120, 140, dan 160 pada temperatur 180°C. Pengujian yang dilakukan meliputi pengujian kekuatan lekat coating, pengujian kekasaran permukaan, pengamatan struktur mikro daerah antarmuka substratlapisan, pengujian komposisi kimia lapisan (SEM dan EDS), pengujian kekerasan mikro antarmuka dan pengujian kekerasan makro piston hasil trial dan produksi standar.
Penelitian menunjukkan bahwa kekuatan ikatan adhesive tertinggi dicapai pada ketebalan coating 140, dimana nilai presentase kegagalan kohesi terendah dan kekuatan ikatan adhesinya tertinggi (63,51 MPa). Dengan semakin tebal lapisan coating, semakin tinggi kekasaran permukaan dan kekerasan pada interface antar lapisan dan substrat. Terjadi jenis ikatan mechanical interlocking antara coating dengan permukaan substrat.

Coating is an important parameter in aluminium gravity die casting which determine the quality of the product. This is more important for piston which requires high precision. One factor that control the quality of coating is the thickness.
This research studied the effect of thickness on the characteristic of the coating. The thickness was varied 120, 140, and 160 at opplication temperature 180°C . A series of testing was conducted, which include adhesivecohesive strength test, surface roughness test, microanalysis using SEM and EDX, micro hardness test and Brinell hardness test.
The research result showed that the maximum adhesive strength was achieve with the thickness of 140, in which the percentage of cohesive failure is the minimum while the adhesive strength is the maximum ((63,51 MPa). The thicker the coating, the higher the surface roughness and the microhardness of the substrate-coating interface. Mode of bonding between the coating and substrate seems to be mechanical interlocking.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41716
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogi Suprayogi
"Proses pengecoran piston di P.T. Japan Motor selama ini dilakukan dengan menggunakan metode Gravity Die Casting (GDC). Untuk menentukan kualitas piston hasil produksi, diperlukan peranan coating sebagai pengatur kecepatan pendinginan selama proses pembekuan. Hal ini menjadi penting mengingat piston harus diproduksi dengan tingkat presisi yang tinggi. Selain itu, coating mampu menentukan tingkat kehalusan permukaan dari setiap piston yang dicetak. Oleh karena itu, dilakukan penelitian mengenai karakteristik coating DH-1 yang diaplikasikan pada temperatur operasi 240°C pada berbagai ketebalan yang akan dilakukan dengan metode cold spraying. Disamping itu akan ditambah coating LNO pada bagian tepi benda uji dengan menggunakan kuas guna mengetahui karakteristik coating tersebut pada bagian sudut cetakan. Pada penelitian ini digunakan variabel ketebalan coating DH-1 sebesar 120 _m, 140 _m dan 160 _m pada suhu operasi 240°. Selain itu, pada sisi benda uji ditambahkan coating LNO. Pengujian yang dilakukan meliputi pengujian kekuatan lekat coating, pengujian kekasaran permukaan, pengamatan struktur mikro daerah antarmuka substrat-lapisan, pengujian komposisi kimia lapisan (SEM dan EDX), pengujian kekerasan mikro sistem coating dan pengujian kekerasan makro piston hasil trial dan produksi standar. Hasil penelitian menunjukkan bahwa pengaruh penambahan ketebalan coating adalah: (i) meningkatkan persentase kegagalan adhesi dan menurunkan persentase kegagalan kohesi; (ii) meningkatkan nilai kekasaran permukaan coating baik pada benda uji standar maupun pada benda uji yang dilakukan pengujian kekuatan lekat coating; (iii) meningkatkan nilai kekerasan mikro pada daerah antarmuka coating substrat secara signifikan.

Production of piston in P.T. Japan Motor uses Gravity Die Casting method. The quality of piston is highly dependent on the die coating, since it is a cooling controller in solidification process. This is more important given the fact that piston must have high precision. Beside that, coating may determine the smoothness of piston surface. Therefore, this research was conducted to analyze the characteristic of DH-1 coating at 240°C operation temperature with various thickness with the cold spraying method. In addition, this research also studied the characteristic of LNO coating which was applied on corner sections using brush method. Thickness of coating was varied 120 _m, 140 _m and 160 _m at operation temperature 240°C. An additive LNO coating was applied in corner section by disregarding its thickness. Adhesive-cohesive strength test, surface roughness test, microanalysis using SEM and EDX, micro hardness test and brinnel hardness test were conducted. The research results showed that the increase in coating thickness will: (i) increase the percentage of adhesive failure while decrease the percentage of cohesive failure, (ii) increase the surface roughness of both standard and posttensile test specimens, and (iii) increase the microhardness of the substratecoating interface."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41743
UI - Skripsi Membership  Universitas Indonesia Library
cover
Glen AG
"Guna menghasilkan produk sepeda motor yang berkualitas maka proses manufaktur komponen mesin sepeda motor seperti komponen piston haruslah terjaga kualitasnya. Kualitas piston, yang diproduksi dengan pengecoran alumunium pada cetakan permanen, sangatlah berkaitan erat dengan kualitas coating cetakan. Sedangkan kualitas coating ditentukan pula oleh temperatur pemanasannya. Temperatur pemanasan yang tepat akan mengoptimalkan karakteristik kohesi dan adhesi coating.
Pada penelitian ini dipelajari pengaruh temperatur coating terhadap karakteristik dan umur pakai coating. Proses coating dilakukan dengan metode cold spray pada permukaan sampel uji. Keseluruhan sampel uji kemudian dilakukan pengujian kekuatan lekat, kekerasan mikro, kekasaran permukaan, dan pengamatan struktur dengan mikroskop optik dan SEM/EDS. Selanjutnya dipilih variabel temperatur pemanasan coating terbaik untuk diaplikasi pada proses pengecoran piston.
Hasil penelitian menunjukan bahwa semakin tinggi temperatur pemanasan coating (240°C) maka sifat kekuatan kohesi (gaya ikat antar coating) akan semakin meningkat. Hasil ini bertolak belakang dengan sifat kekuatan adhesi coating dan baja H13. Hal tersebut terlihat dari persentase mode kegagalan dimana pada temperatur 240°C nilai kegagalan kohesi mencapai angka terendah yaitu 41.43 % dan mode kegagalan adhesi mencapai nilai tertinggi yaitu 52.32 %. Hal ini didukung pula oleh data hasil pengujian kekerasan mikro, kekuatan lekat, serta pengamatan struktur mikro. Hasil aplikasi variabel pemanasan coating pada 240°C dalam pengecoran piston menguatkan hasil penelitian dimana mode kegagalan coating yang terjadi ialah kegagalan adhesi.

One key for a quality motorcycle is a quality piston, which is made of aluminum casting through gravity technique by using permanent mould. Quality of piston is highly dependent on quality of die coating, while it is dependent on the application temperature of the coating, which may optimize the cohesive - adhesive bonding of the coating to the die materials.
This research studied the effect of application temperature on the characteristic and the life time of die coating. Coating process was applied by using cold spray method and then done a series of test including adhesion pull test, micro hardness, roughness, and microstructure observation by optical microscope and SEM / EDS. The test parameter of coating process was used in trial of piston production and percentage of reject analysis.
Result show that the increase in coating application temperature led to increase in cohesive mode of bonding and decrease in adhesive mode. This result supported by micro hardness, adhesive tensile test, and microstructure observation. Trial piston production by using application temperature of 240°C. Support the notify that failure mode was dominated by adhesive mode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41742
UI - Skripsi Membership  Universitas Indonesia Library
cover
Felix Natanael
"Piston adalah salah satu komponen kendaraan bermotor yang diproduksi melalui proses pengecoran menggunakan cetakan logam. Pengaplikasian coating pada permukaan cetakan merupakan tahap awal yang mutlak dilakukan sebelum tahap pengecoran. Berbagai parameter proses ini akan menentukan karakteristik coating pada permukaan cetakan serta kualitas produk jadi. Salah satu parameter tersebut adalah temperatur pemanasan pada proses aplikasi. Pada penelitian ini, dilakukan serangkaian pengujian dengan variasi temperatur tersebut untuk menganalisa pengaruhnya terhadap karakteristik coating dengan metode aplikasi cold spray. Variasi temperatur yang digunakan adalah 120°C, 180°C dan 240°C. Pengujian yang dilakukan meliputi pengujian kekuatan adhesikohesi, pengujian kekerasan, pengujian kekasaran permukaan, analisa kegagalan, pengujian komposisi kimia, dan analisa struktur mikro menggunakan mikroskop optik SEM/EDX. Pembahasan juga mencakup ikatan yang terjadi antara coating Si-based dan permukaan cetakan yang diaplikasikan dengan metode cold spray. Penelitian ini merupakan bagian dari sebuah penelitian besar mengenai peningkatan kualitas dan umur pakai coating pada cetakan logam. Setelah didapatkan analisa dari seluruh pengujian, dilakukan uji coba produksi piston dengan parameter terbaik.
Dari hasil penelitian didapat bahwa pada temperatur 240°C dihasilkan kekuatan adhesi-kohesi yang tertinggi yaitu 10,64 MPa, tetapi kemampuan adhesi antara coating dengan permukaan cetakan akan mengalami penurunan. Hal ini diperkirakan disebabkan adanya tegangan sisa yang timbul pada interface antara substrat dan coating. Semakin tinggi temperatur aplikasi, kekasaran permukaan interface menurun, tetapi kekerasan meningkat. Pada temperatur 240°C dihasilkan kekasaran paling rendah, yaitu 14 _m dan kekerasan paling tinggi, yaitu 109 VHN. Namun, hasil uji coba dengan temperatur aplikasi 240°C tidak menghasilkan umur pakai yang maksimal kemungkinan akibat adanya Efek Leidenfrost pada temperatur di atas 220°C.

Pistons are produced by casting method using permanent mold. One key for a quality piston is a quality die coating, which is determined by many parameters. Coating is applied on the piston permanent mold to obtain precise and high quality surface. The quality of the coating is highly dependent on temperature. This research studied the effects of temperature on the characteristics of Si-based coating to be used in aluminum piston casting. The temperature was varied 120°C, 180°C, and 240°C. Series of tests, such as adhesion-cohesion test, hardness test, surface roughness test, failure analysis, chemical composition test, and microstructure analysis were conducted. The best process parameter was then used in piston trial production. The percentage of reject of the trial was compared to that of regular processes.
The result showed that the highest adhesive-cohesive strength is at temperature 240°C, which is 10,64 MPa, but the adhesive ability between coating and substrate downgraded. This may be due to residual stress occurred on the interface. Higher temperature yields higher hardness, but lower surface roughness. The highest hardness and lowest surface roughness is at 240°C, which are 109 VHN and 14 _m, respectively. But, casting trial by using coating applied at 240°C did not give the maximum lifetime which may be due Leidenfrost Effect that takes place at 220°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41745
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risdianto
"Salah satu elemen penting dari suatu komponen otomotif adalah kepala piston yang terbuat dari alumunium. Pada aplikasinya kepala piston mengalami gesekan yang dinamis sehingga memerlukan sifat ketahanan abrasi dan ketahanan korosi yang tinggi. Sifat ketahanan abrasi dan ketahanan korosi dari kepala piston akan berpengaruh terhadap umur pakainya. Salah satu metode perlakuan akhir yang dapat digunakan untuk mendapatkan sifat ketahanan abrasi dan korosi yang baik adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium akan diubah menjadi lapisan aluminium oksida (Al2O3) yang amat keras dan tahan korosi. Salah satu parameter terpenting yang amat menentukan karakteristik permukaan hasil anodisasi adalah jenis elektrolit. Penelitian kemudian dilakukan untuk memahami pengaruh dari jenis elektrolit yang digunakan pada proses anodisasi terhadap kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada permukaan logam paduan aluminium silikon. Variabel yang digunakan dalam penelitian kali ini adalah variasi jenis elektrolit yaitu H2SO4, NaOH, H2C2O4 dan H3PO4 Hasil penelitian kemudian menunjukkan adanya perbedaan kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada anodisasi di elektrolit H2SO4, NaOH, H2C2O4 dan H3PO4 yang disebabkan oleh perbedaaan derajat dissosiasi dan konduktivitas ion dari tiap larutan. Berdasarkan pengujian kekerasan mikro terhadap lapisan oksida didapatkan nilai kekerasan yaitu 401 _HV pada elekrolit H2SO4, 125 _HV pada elektrolit NaOH, 151 _HV pada elekrolit H2C2O4, dan 1288 _HV pada elekrolit H3PO4. Berdasarkan pengujian ketebalan terhadap lapisan oksida didapatkan nilai ketebalan yaitu 17 _m pada elekrolit H2SO4 , 3 _m pada elektrolit NaOH , 4 _m pada elekrolit H2C2O4 , dan 7 _m.pada elekrolit H3PO4.

One of important element from automotive component is head of piston that made from alumunium.Head of piston in application experience dinamics friction show that needs high abrasive and corrosion resistance. The properties of abrassive resistance and corrosion resistance from head of piston will influence for it life time. One of final treatment methode that can used for getting good abrasive and corrosive resistance is anodizing. In this anodizing process, the alumunium surface will be changed in to alumunium oxide (Al2O3) that very hard and good corrosion resistance. One of the most important factor to determine the result of surface characteristic in anodizing are electrolyte types. This research was then conduct to understand influence from difference electrolyte that used in this process to hardness and thickness from oxide layer that resulted in the surface of alluminiun silicon alloy. The variabel that used in this research from the variation of kinds electrolyte which is H2SO4, NaOH, H2C2O4 dan H3PO4. The result shows that are difference hardness and thickness from the oxide layer in this anodizing methode in H2SO4, NaOH, H2C2O4 and H3PO4 electrolyte, were caused by the diffrence of dissociation degree and ion conductivity from each solution. The hardness value from this oxide layer, based on microhardness testing, the result are 401 _HV in H2SO4, 125 _HV in NaOH electrolyte, 151 _HV in H2C2O4 electrolyte, and 1288 _HV in H3PO4 electrolyte. And then the thickness value from oxide layer based on microhardness testing, the result are 17 _m in H2SO4 electrolyte , 3 _m in NaOH electrolyte, 4 _m in H2C2O4 electrolyte , and 7 _m in H3PO4 electrolyte."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41665
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryo Mulyono
"Aluminium merupakan salah satu material logam yang banyak digunakan, diaplikasikan dan dikembangkan pada berbagai macam produk otomotif, contohnya piston. Piston sebagai salah satu komponen otomotif yang cukup penting pada mesin kendaraan bermotor memerlukan sifat ketahanan abrasi dan ketahanan korosi yang baik. Salah satu metode perlakuan akhir yang dapat digunakan untuk mendapatkan sifat ketahanan abrasi dan korosi yang baik adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium akan diubah menjadi lapisan aluminium oksida yang amat keras dan tahan korosi. Salah satu parameter terpenting yang amat menentukan karakteristik permukaan hasil anodisasi adalah potensial. Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya potensial anodisasi terhadap kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada permukaan logam paduan aluminium silikon. Variabel yang digunakan dalam penelitian kali ini adalah variasi besarnya tegangan yaitu 9 Volt, 11 Volt, 13 Volt dan 15 Volt. Hasil penelitian kemudian menunjukkan bahwa dengan meningkatnya tegangan anodisasi (yaitu dari 9, 11, 13 dan 15 Volt) maka kekerasan lapisan oksida rata-rata yang ditunjukkan dari hasil uji kekerasan mikro akan semakin meningkat pula. Ynitudari 109 uHV pada potensial 9 Volt, 116 uHVpada potensial 11 Volt, 136 fiHV potensial 13 V, hingga 153 uHV pada potensial 15 Volt. Peningkatan juga dialami oleh ketebalan lapisan oksida rata-rata yang dihasilkan, yaitu sebesar 13 _m pada potensial anodisasi 9 Volt, 15 _m pada potensial anodisasi 11 Volt, 17 _rn pada potensial anodisasi 13 Volt, hingga 19 _m pada potensial anodisasi 15 Volt."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41802
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Saputra
"Luasnya aplikasi aluminium didalam kehidupan sehari-hari memunculkan suatu tantangan serta peluang baru yaitu bagaimana mempertahankan dan meningkatkan kualitas dari produk-produk aluminium, sehingga produk-produk tersebut mempunyai umur pakai yang lama serta tahan terhadap abrasi, korosi, ramah lingkungan serta memiliki nilai estetik didalam pemakaiannya. Suatu metode yang digunakan untuk meningkatkan ketahanan aluminium terhadap abrasi dan korosi yaitu anodizing. Dimana metode ini merupakan proses elektrokimia yang menghasilkan lapisan oksida yang tipis pada permukaan logam yang dioksidasi dengan menggunakan arus listrik melalui suatu media elektrolit. Lapisan oksida hasil anodizing akan memberikan karakteristik permukaan yang dapat direkayasa; kekerasan, ketahanan abrasi dan korosi, serta konsisten dalam ketebalan permukaan. Metode anodizing merupakan metode yang relatif mudah dan murah untuk suatu proses rekayasa permukaan dan dapat diwarnai untuk tujuan dekorasi.
Salah satu proses anodizing yang digunakan adalah anodizing tipe II dengan media larutan elektrolit berupa asam sulfat 15% berat dengan pH: 2, tegangan 15 Volt, rapat arus 1,83 A/dm2. Variabel yang digunakan dalam penelitian ini adalah variasi temperatur elektrolit yaitu 28ºC, 23ºC, 18ºC, 13ºC dan 9ºC, sehingga diharapkan dapat diketahui pengaruh dari variasi tersebut terhadap nilai kekerasan, dan ketebalan dari lapisan oksida aluminium.
Hasil penelitian menunjukkan bahwa dengan penurunan temperatur dari temperatur 28ºC, 23ºC, 18ºC, 13ºC hingga 9ºC menyebabkan nilai kekerasan lapisan oksida aluminum meningkat, yaitu masing-masing sebesar 71μHV, 100 μHV, 110 μHV, 128 μHV. dan 220 μHV. Dengan ketebalan lapisan oksida non-etsa pada temperatur 28ºC, 18ºC dan 9ºC dicapai masing-masing sebesar 24μm, 17 μm, 11 μm. Hasil yang paling optimum dicapai pada temperatur 9_C dengan nilai kekerasan tertinggi 220 μHV dan ketebalan lapisan oksida mencapai 11 μm."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41653
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raina Diva Callista
"Penelitian ini betujuan untuk mengetahui pengaruh temperatur cetakan dan temperatur tuang terhadap hasil pengecoran piston pada material aluminium AC8A menggunakan metode gravity die casting dengan program simulasi Z-Cast. Penelitian ini menggunakan simulasi pengecoran. Simulasi ini menggunakan software Z-Cast Pro 3.0 dan desain pada penelitian ini menggunakan software Solid Works 2021 untuk menghasilkan gambar 3D. Penelitian ini menggunakan produk piston dengan variasi variabel temperatur cetakan dan temperatur tuang. Variasi variabel temperatur cetakan yang digunakan adalah 250°C, 300°C, dan 350°C. Variabel yang digunakan untuk variasi temperatur tuang adalah 660°C, 700°C, dan 750°C. Shrinkage karena adanya proses pembekuan atau solidifikasi yang tidak merata pada produk, disebabkan oleh penyusutan volume logam cair pada proses pembekuan serta tidak mendapatkan pasokan logam cair dari riser. Pada penelitian tidak menggunakan riser dengan keadaan optimal pada temperatur cetakan 250°C dan temperatur tuang 660°C, penggunaan riser berukuran 40 mm didapatkan hasil temperature cetakan 350°C dan temperatur tuang 750°C , ukuran riser 50 mm dengan keadaan optimal pada temperatur cetakan 250°C dan temperatur tuang 660°C. Upaya untuk mengurangi cacat dengan membesarkan ukuran riser, dengan ukuran riser 50 mm akan menghasilkan produk coran denga temperatur cetakan dan temperatur tuang yang rendah. Shrinkage pada riser 50 mm lebih sedikit dibandingkan ukuran 40 mm dan tidak menggunakan riser.

This research aims to determine the effect of mold temperature and pouring temperature on the results of piston casting on AC8A aluminum material using the gravity die casting method with Z-Cast simulation program. This research uses casting simulation. This simulation uses Z-Cast Pro 3.0 software and the design in this research uses Solid Works 2021 software to produce 3D images. This research uses piston product using variable variations in mold temperature and pouring temperature. The variable of mold temperature variations used are 250°C, 300°C, and 350°C. The variables used to vary the pouring temperature are 660°C, 700°C, and 750°C. Shrinkage is due to the uneven solidification process in the product, due to the shrinkage of the liquid metal volume during the solidification process and not getting a supply of liquid metal from the riser. In the research without using a riser with optimal conditions at a mold temperature of 250°C and a pouring temperature of 660°C, using a 40 mm riser resulted in a mold temperature of 350°C and a pouring temperature of 750°C, a riser size of 50 mm with optimal conditions at the mold temperature 250°C and pouring temperature 660°C. Efforts to reduce defects by increasing the riser size, with a riser size of 50 mm will produce cast products with low mold temperatures and casting temperatures. Shrinkage on a 50 mm riser is less than the 40 mm size and does not use a riser."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ebrianto Sattria Malik
"Aluminium adalah logam yang banyak digunakan dalam dunia indusrtri manufaktur. Pada proses pengecoran dapat terjadi masalah seperti permukaan hasil coran yang tidak halus, cetakan tidak terisi penuh, benda sulit dilepaskan dari cetakan. Salah satu teknologi yang dapat digunakan untuk mengatasi masalah tersebut adalah refractory coating yang diaplikasikan pada cetakan pengecoran. Refractory coating adalah pelapisan yang meliputi bahan dengan komposisi yang sudah ditentukan sifatnya dapat tahan api, dan tahan panas yang tinggi serta utamanya mencegah reaksi yang terjadi pada kontak permukaan cetakan dengan logam. Pada umumnya, zirkon silikat banyak digunakan dalam industri keramik, pengecoran, dan refraktori dikarenakan memiliki ekspansi dan konduktivitas termal rendah dan resistensi tinggi terhadap thermal shock. Namun, penggunaan zirkon silikat dalam jumlah besar memakan biaya yang cukup tinggi. Dalam penelitian ini, kaolin dan silica fused digunakan sebagai substitusi parsial filler pada foundry coating berbahan dasar zirkon silikat karena memiliki refractoriness yang baik. Dalam aspek biaya, kedua bahan memiliki harga yang lebih murah jika dibandingkan dengan zirkon silikat. Penelitian ini bertujuan untuk mengetahui kaolin dan silica fused yang andal sebagai alternatif pengganti filler zirkon. Dalam penelitian ini, terdapat dua belas sampel yang dibuat dengan variasi distribusi ukuran partikel, penambahan silica fused dan kaolin 16%, 18%, dan 20% dan perlakuan berbeda yang dipanaskan dan tidak dipanaskan. Ukuran partikel dan distribusi filler dianalisis menggunakan Analisis Ukuran Partikel. Pengukuran viskositas juga telah dilakukan untuk menganalisis karakteristik reologi dari slurry coating. Morfologi permukaan lapisan kering diambil menggunakan SEM. Kualitas coating ditentukan dari stabilitas termal pelapisan yang dianalisis menggunakan STA dan pengujian ketahanan termal. Pengujian pull off test dilakukan untuk melihat kuat lekat coating pada substrat metal. Hasil penelitian menunjukkan distribusi ukuran yang lebih baik untuk coating adalah distribusi ukuran yang lebar namun ukuran rata-rata partikelnya kecil. Penambahan komposisi memberikan penambahan pada nilai viskositas pada kedua bahan coating. Pengujian TGA hingga suhu 800oC tidak membuat rusak bahan coating. Ketahanan termal silica fused lebih baik dari kaolin. Nilai pull off test berpengaruh pada ketebalan coating dimana ketebalan coating berpengaruh pada nilai viskositas bahan coating

Aluminum is a metal that is widely used in the manufacturing industry. However, in the casting process problems can occur such as the defect on the surface, the mold is not fully filled, or difficult to remove parts from the mold. The technologies that can be used to overcome these problems is the refractory coating which is applied to casting molds. Refractory coating is a coating containing materials with a predetermined composition of fire-resistant properties, high heat resistance and helps to prevent reactions that occur on the surface contact of the mold with the metal. In general, zircon silicate is widely used in the ceramics, casting and refractory industries because it has low expansion and thermal conductivity and high resistance to thermal shock. However, using zircon silicate in large quantities is quite expensive. In this study, kaolin and silica fused were used as partial filler substitutions in zircon silicate-based foundry coatings because they have good refractoriness. In terms of cost, both materials have lower prices compared to zircon silicate. This study aims to determine the reliable kaolin and silica fused as an alternative to zircon filler. In this study, there were 12 samples made with variations in particle size distribution, the addition of silica fused and kaolin 16%, 18%, and 20% and different treatments which were heated and not heated. Particle size and filler distribution were analyzed using Particle Size Analysis. Viscosity measurements have also been carried out to analyze the rheological characteristics of the slurry coating. Dry surface morphology was taken using SEM. The quality of the coating is determined by the thermal stability of the coating which is analyzed using STA and thermal resistance testing. Pull off test is carried out to see the adhesive strength of the coating on the metal substrate. The results showed a better size distribution for coatings is a wide size distribution but the average size of the particles is small. Addition to the composition gives an addition to the value of viscosity in both coating materials. TGA testing up to 800oC does not damage the coating material. Silica fused thermal resistance is better than kaolin. Pull off test values was affected by the thickness of the coating where the thickness of the coating affects the viscosity value of the coating material."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55227
UI - Tesis Membership  Universitas Indonesia Library
cover
Metrik Kresna Pradana
"ABSTRAK
Teknologi Thermal Spray Aluminium TSA telah banyak diaplikasikan pada industri Minyak dan Gas terutama sebagai pelindung terhadap korosi. Sebagai pelindung korosi, sifat mekanis seperti kekuatan ikatan adesif dan kohesif material pelapis berkaitan langsung dengan umur ketahanan terhadap korosi. Pada penelitian ini telah dilakukan pengamatan pengaruh waktu tunda proses pelapisan aluminium terhadap karakteristik sifat mekanis lapisan.Proses pelapisan aluminium pada penelitian ini menggunakan metode Thermal Arc Spray dengan material substrat baja karbon SK5 dan material pelapis kawat aluminium 95.5 , dilakukan secara bertahap dengan memberikan waktu tunda 0 jam tanpa waktu tunda , 4 jam, 24 jam dan 48 jam. Ketebalan lapisan TSA awal 75-125 ?m, dan ketebalan lapisan TSA setelah diberikan waktu tunda sebesar 200-250 ?m. Sampel dilakukan pengujian daya lekat pull-off test , tekuk bending test , kekerasan mikro, pengamatan metalografi menggunakan mikroskup optic dan SEM.Proses pelapisan TSA dengan disertai waktu tunda 4 jam, 24 jam dan 48 jam menghasilkan tingkat porositas yang lebih tinggi pada lapisan dibandingkan dengan tanpa waktu tunda, namun variabel perbedaan waktu tunda tidak mempengaruhi tingkat porositas. Tingkat porositas tersebut berpengaruh pada kekuatan ikatan adesif dan kohesif lapisan. Dari hasil pengujian daya lekat lapisan didapatkan sampel tanpa waktu tunda menghasilkan kekuatan ikatan 8,3 MPa, sedangkan sampel yang diberikan waktu tunda 4 jam, 24 jam dan 48 jam mengalami kegagalan adesif dan kohesif dengan kekuatan daya lekat 8 MPa, 8 MPa, dan 7,9 MPa. Pada sampel dengan waktu tunda, lapisan TSA pertama akan bertindak sebagai permukaan substrat bagi lapisan TSA kedua. Tingkat kekasaran dan profil permukaan lapisan TSA pertama sebesar 126,3 ndash; 153 ?m akan menghasilkan tingkat porositas lapisan TSA keseluruhan yang lebih tinggi dibandingkan proses tanpa waktu tunda.

ABSTRACT
Thermal Aluminum Spray TSA has been widely applied in oil and gas industries especially as a protection against corrosion. As a corrosion protector, mechanical properties of coating materials such as adhesive and cohesive bond strength are directly related to the life time of corrosion resistance. In this research has been observed the influence of time delay of aluminum coating process on the coating mechanical properties.The aluminium coating process in this research using Thermal Arc Spray as the method with SK5 carbon steel substrat and 95.5 aluminum wire coating material. Coating process has been done in 2 stages with 0 hours, 4 hours, 24 hours and 48 hours time delay. The first layer thickness is 75 125 m, and after a given delay time is 200 250 m. Coated samples were tested by pull off test, bending test, micro hardness and metallographic observation using optical microscope and SEM.TSA within 4 hour, 24 hour and 48 hour time delay coating process produces higher porosity levels in the coating compared without time delay, however delay time difference variable did not affect the porosity level. Furthermore, porosity level will affect the adhesive and cohesive bond strength of the coating. From the Pull off testing, sample without delay time resulting 8,3 MPa bond strength, and samples with 4 hours, 24 hours and 48 hours delay time resulted bond strength of 8 MPa, 8 MPa and 7,9 MPa. For sample with time delay, the first TSA coating layer will act as a substrate surface for the second TSA layer. Thus, the surface roughness level of the first TSA coating layer of 126,3 ndash 153 m will resulting higher porosity for overall TSA coating layer than the process without time delay."
2017
T49746
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>