Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92528 dokumen yang sesuai dengan query
cover
Moh. Misbah
Depok: Fakultas Teknik Universitas Indonesia, 1998
S49041
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reinal Rachmavial
"Investment casting merupakan salah satu jenis pengecoran presisi dimana pengecoran ini salah satu proses untuk menghasilkan suatu produk coran yang memiliki geometri komplek misalnya ketipisan, kemiringan, kelengkungan, variasi radius kecil, kehalusan permukaan produk, dan mensyaratkan tingkat kepresisian bentuk dan dimensi. Penggunaan metode pengecoran presisi ini dimaksudkan untuk memotong rantai proses manufaktur yaitu pemesinan. Pada penelitian ini dilakukan suatu proses teknologi pembuatan sudu turbin uap tipe V-25 untuk industri pupuk dengan menggunakan metode investment casting, dimana kontur dari sudu ini merupakan salah satu contoh produk yang membutuhkan penanganan khusus di dalam pembuatannya. Pembuatan sudu turbin ini disebabkan persediaan suku cadang sudu bagi industri pupuk selama ini masih diperoleh dengan cara impor atau dengan kata lain masih membeli produk sudu dari luar negara Indonesia. Pada proses investment casting untuk pembuatan sudu, hal yang sangat penting untuk keberhasilan dalam kepresisian dari sudut turbin ini adalah proses pembuatan cetakan pola, bahan baku pola lilin, parameter proses yang mempengaruhi pembuatan pola, teknik pembuatan cetakan keramik, teknik pembakaran cetakan keramik, proses peleburan material dan teknik penuangannya. Dari hasil penelitian dengan variabel temperatur lilin, temperatur nosel, tekanan injeksi dan waktu injeksi tetap 7, 5 detik dengan lilin yang digunakan tipe beeswax didapat hasil produk yang baik adalah pada kondisi temperatur lilin 64 °C, temperatur nosel 30 °C, dan tekanan injeksi 1, 75 MPa.

Investment casting is a kind of precision casting which produces casting products having complex geometry such as thin, slope, small radius, smooth surface and need precision level of shape and dimension. It is used to reduce the chain of manufacturing processes especially machining. In this research, an investment casting was employed to manufacture a steam turbine blade of V-25 type for a fertilizer industry. The contour of the blade has a continuous changing of radius that needs a special manufacturing process. The reason of this research is due to the fact that so far the blade was supplied by foreign countries. The most important factors in manufacturing a precision blade by an investment casting are pattern mold making process, wax pattern material, parameter process which effect the pattern making, ceramic mold making method, ceramic mold firing method, melting and pouring. In this research with wax temperature, nozzle temperature, injection pressure as parameters process and injection time constant at 7. 5 second, using beeswax type. The results showed that the best pattern was obtained at 64 °C wax temperature, 30 °C nozzle temperature and 1. 75 MPa injection pressure.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
T41171
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendarto Prakoso
Depok: Fakultas Teknik Universitas Indonesia, 1993
S35984
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasoloan, Reisal Rimtahi
Depok: Fakultas Teknik Universitas Indonesia, 1993
S36709
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gunawan
Depok: Fakultas Teknik Universitas Indonesia, 1993
S35950
UI - Skripsi Membership  Universitas Indonesia Library
cover
Citra Kusumadewi
"Salah satu pemanfaatan gas suar bakar adalah sebagai bahan bakar pembangkit. Pembangkit Listrik X adalah PLTGU existing yang menghasilkan daya listrik 410 MW dengan menggunakan bahan bakar gas alam sebanyak 87,74 MMSCFD. Pada penelitian ini gas suar bakar akan dijadikan bahan bakar pengganti gas alam untuk membangkitkan listrik 410 MW. Total maksimum laju alir gas suar bakar yang tersedia adalah 7,9 MMSCFD. Pemanfaatan gas suar bakar sebagai bahan bakar pembangkit listrik akan menurunkan biaya bahan bakar namun juga menambah biaya investasi berupa alat kompresor.
Dalam penelitian ini dilakukan dua skenario, yaitu skenario existing menggunakan bahan bakar gas alam dan skenario menggunakan variasi laju alir gas suar bakar terhadap laju alir gas alam sebagai bahan bakar Pembangkit Listrik X. Skenario yang paling memberikan keuntungan dari pada desain existing adalah saat menggunakan laju alir gas suar bakar sebesar 7,9 MMSCFD dengan laju alir gas alam sebesar 79,06 MMSCFD. NPV skenario desain tersebut 56.976.160,22 dengan pay back period 14,84 tahun.

Utilization of flare gas is as fuel for power plants. Power plant X is the existing gas and steam power plant that generates 410 MW of electrical power using natural gas fuel as much as 87.74 MMSCFD. In this study flare gas will be used as fuel instead of natural gas to generate 410 MW of electricity. The maximum total flare gas flow rate provided is 7.9 MMSCFD. Utilization of flare gas as power plant fuel will reduce fuel costs but also add to the cost of investment of compressor tool.
In this study two scenarios will be compared, the existing scenarios using natural gas fuel and scenarios using a variation of the flow rate of gas flaring on the flow rate of natural gas as fuel for power plants X. Scenario would benefit from the existing design are currently using flow rate gas flare 7,9 MMSCFD and natural gas with flow rate 79,06 MMSCFD. The design scenarios NPV is 56.976.160,22 with a payback period of the plant investation is 14,84 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47340
UI - Tesis Membership  Universitas Indonesia Library
cover
A. Susetyo Edi Prabowo
"Kota Semarang sebagai ibu kota propinsi Jawa Tengah terletak antara garis 6° 50' - 7° 10' Lintang Selatan dan garis 109° 35' - 110 50' Bujur Timur. Dibatasi sebelah barat oleh kabupaten Kendal, sebelah timur oleh kabupaten Demak, sebelah selatan oleh kabupaten Semarang dan sebelah utara oleh Laut Jawa dengan garis pantai sepanjang 13,6 km. Secara administratif kota Semarang meliputi 16 wilayah kecamatan dan 177 kelurahan dengan luas wilayah 373,70 km2 dengan topografi merupakan wilayah berbukit-bukit dan daerah yang landai terletak di sepanjang pesisir utara. Kawasan ini merupakan dataran rendah aluvial dengan ketinggian bervariasi antara 0 - 250 m dpl.
Kota Semarang tidak terlepas dari permasalahan pemenuhan kebutuhan air, karena daerah sekitarnya mengalami pertumbuhan yang pesat terutama dengan berkembangnya lokasi industri. Besarnya resapan air hujan di sebagian daerah Semarang terdapat di daerah aliran sungai (DAS) Garang dengan jumlah rata-rata 121.775.200 m3/tahun (Direktorat Geologi Tata Lingkungan, 199912000). Yang memiliki luas 195.57608 km2 (52,75% luas kota Semarang).
Penduduk Kota Semarang pada tahun 1998 tercatat berjumlah 1.272.648 jiwa dengan tingkat pertumbuhan penduduk selama tahun 1998 sebesar 0,842% (Kota Semarang Dalam Angka, 1998). Dalam kurun waktu 5 tahun terakhir kepadatan penduduk cenderung naik seiring dengan pertumbuhan jumlah penduduk. Namun disisi lain penyebaran penduduk pada masing-masing wilayah kecamatan belum merata, kecamatan Semarang Tengah tercatat sebagai wilayah terpadat sedangkan kecamatan Mijen merupakan wilayah dengan tingkat kepadatan terendah.
Saat ini sekitar 30% kebutuhan air bersih masyarakat kota Semarang terpenuhi oleh PDAM (]ICA, 1998). Disisi lain kapasitas produksi air PDAM sangat tergantung pada air sungai, karena di kota Semarang sudah mulai terjadi krisis air tanah. Data pada tahun 1997 memperlihatkan setengah dari total kapasitas air PDAM, kurang lebih 0,901 m3/detik diambil dari sungai Garang. Sampai tahun 2015 prediksi kebutuhan air bersih kota Semarang mencapai 12,218 m3/detik. Sehingga sebagian besar penduduk dan kebutuhan industri di daerah Semarang harus memenuhi kebutuhan air bersih dari budi daya sendiri, yaitu dari air tanah dengan cara membuat sumur gali, dan sumur bor. Perkembangan pengambilan air tanah di kota Semarang meningkat tajam seiring dengan meningkatnya jumlah penduduk dan pertumbuhan ekonomi.
Namun di sisi lain peningkatan jumlah penduduk pembangunan sarana dan prasarana perkotaan sehingga terjadi perubahan peruntukan lahan. Dengan adanya perubahan ini, kemampuan tanah untuk meresapkan air menjadi sangat terbatas hal ini ditunjukkan antara lain dengan meningkatnya limpasan kumulatif air aliran permukaan. Nilai limpasan air permukaan suatu wilayah merupakan daya kumulatif dari masing-masing jenis tata guna lahan. Maka daya melimpaskan air suatu lahan tergantung pada pola tata guna lahannya (Guritno, 2000). Penulis mencoba untuk menentukan daya dukung lahan di DAS Garang dengan bantuan SIG.
Bahan penelitian adalah ekosistem kawasan resapan air (Recharge Area) dan ekosistem lainnya yang terkait di DAS Garang dan sekitarnya yang diperoleh dalam bentuk data spasial serta tabular. Data sekunder yang dikumpulkan melalui proses digitasi disusun menjadi peta digital. Beberapa peta digital tersebut kemudian di overlay sebagai dasar analisis terhadap keperluan penelitian ini.
Dari hasil analisis terhadap pola tata guna lahan di DAS Garang pada tahun 1993 diperoleh nilai limpasan kumulatifnya (Ckum) sebesar 0.5288069 (> 0.4) menunjukkan bahwa daya dukung lingkungan di DAS tersebut buruk sedangkan pada tahun 1998 nilai limpasan kumulatifnya (Ck ) justru meningkat menjadi sebesar 0.53550415. Kedua fakta tersebut diatas mengindikasikan bahwa pola tata guna lahan di DAS Garang menunjukkan penurunan dari tahun 1993 ke tahun 1998 sehingga memerlukan perhatian yang serius pada masa mendatang.

The city of Semarang, capital of Central Java is situated between 60 50' - 7° 10' latitude and 109° 35' - 110° 50' longitude. It is bordered by Kendal Regency on the west, by Demak Regency on its east, on the south by Semarang Regency and at its north is the 13,6 km. Coast line of the Java sea. Administratively the city of Semarang consists of 16 districts and 177 sub districts covering an area of 373,70 square km. With a topography of rolling hills and gently sloping land at its northern coast. The whole region is an alluvial lowland lying at 0 to 250 meters above sea level. Semarang city is not free from the problems of adequate water supply, due to the rapid development of its surrounding areas, in particular that of its industry. The area with the highest annual rainfall with an average of 121.775.200 m3/year (Directorate of Geology and Environmental, 1999/2000) is situated along the Garang river stream area at the southern part of Semarang a total area of 195.57608 square lcm (52,75% Semarang total area).
The population amount of Semarang city recorded in 1998 is 1.272.648 and has an annual growth by 1998 of 0,842% (Semarang city in numbers, 1998). Within the last 5 year its population density has tended to increase that is commensurate wit its population growth. However, its population is unevenly distributed among the districts, with Central Semarang district recorded as the most densely populated area, and Mijen district having the lowest density.
At present about 30% of the city population's water requirement is supplied by PDAM (ICA, 1998). However, the production capacity for fresh water relies mostly on adequate river water, due to the merging problem of decreasing grand water levels in the city. Data?s from 1997 show that half of PDAM supply capacity, roughly 0,901 cubic m/sec., is water taken from the Garang river. By year 2015 it is predicted that demand for fresh water will reach 12,218 cubic rn3/sec. Most of Semarang's population industrial needs for fresh water will have to be supplied through own resources, namely by digging along boring wells.
Thus the rapid increase of ground water use in Semarang city is in direct relation to the population increase and industrial development.
Unfortunately the increase in population means building more infrastructures which in turn caused a change in land use. With the increased land use, the capability of the ground surface to absorb water has decreased, as can be seen from the increasing cumulative surface watershed. Thus the rate of of watershed capacity depends on the cumulative results from the various cities? land use. The watershed capacity of an area depends on the pattern of land use system deployed in that area (Guritno, 2000). The writer tries to assess the Garang river stream area (DAS) land capacity by using SIG.
The research material comes from the water recharge area ecosystem and other ecosystems related to DAS Garang and surroundings, collected in spatial and tabular data form. The secondary data collected by digitations process was compiled into a digital map. Several of the digital maps were then overlaid as the basis for this research requirement.
From the results of an analysis of the land use system pattern at DAS Garang in 1993, a cumulative watershed capacity of (Ck?m) 0.5288069 (> 0.4) was concluded which indicates that the capability of this particular DAS is bad, even when in 1998 the cumulative watershed capacity increased slightly to 0.53550415. Both the above findings indicate that the pattern of land use at DAS Garang has decreased in effectiveness and such requires serious attention in the near future.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2001
T5796
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2001
S37073
UI - Skripsi Membership  Universitas Indonesia Library
cover
Victor Firman
"ABSTRAK
Energi Iistrik dewasa ini sudah merupakan kebutuhan primer bagi kehidupan manusia. Baik untuk kehidupan sehari-hari maupun indusin membutuhkan listrik sebagai sumber energi. Untuk mendapatkan energi listrik ini dibuatlah suatu sistem penggerak mula yang dapat mengubah energi potensial yang terdapat pada air menjadi energi Iistnk yang langsung dapat digunakan. Pada sistem tersebut air merupakan fiuida kerianya yang wujudnya diubah-ubah.
Sistem penggerak mula tersebut terdiri dari unit-unit pembangkit uap (boiler), pemanas Ianjut uap (super heater), turbin uap (steam turbine), generator and kondensor. Air pertama kali masuk dari bak penampung dipompakan ke dalam boiler untuk dipanaskan and berubah menjadi bentuk uap. Uap ini kemudian dialirkan ke dalam super heater and keluar sebagai uap super panas. Uap super panes ini kemudian masuk ke dalam turbin uap melalui nosel and menumbuk sudu-sudu turbin sehingga berputaran pada keoepatan tertentu. Sudu-sudu turbin yang berpegangan pada poros yang dikopel dengan generator menyebabkan generator bekerja mengubah energi putaran menjadi energi Iisirik. Kemudian uap bekas tadi dialirkan masuk ke dalam kondensor and dikondensasikan sehingga wujudnya kembaii menjadi cair and siap dioperasikan lagi.
Sistem penggerak mura yang diujikan merupakan miniatur dari sistem penggerak mula yang biasanya digunakan. Pengujian yang dilakukan merupakan pengukuran unjuk kerja unit-unit yang terdapat dalam sistem tersebut juga pengukuran keseluruhan sistem. Analisanya merupakan hasil perhitungan unjuk kerja and perbandingan unjuk kerja yang ditunjukkan pada putaran 3000 rpm and 3600 rpm, dimana putaran 3600 rpm mempakan putaran makslmum dari turbin.

"
2000
S37207
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudi Wibowo
"Energi listrik dewasa ini sudah merupakan kebutuhan primer bagi kehidupan manusia. Baik untuk kehidupan sehari-hari maupun industri membuiuhkan Iistrik sebagai sumber energi. Uniuk mendapatkan energi Iistrik ini dibuatlah suatu sisiem penggerak mula yang dapat mengubah energi potensial yang terdapat pada air menjadi energi listrik yang Iangsung dapat digunakan. Pada sistem tersebut air merupakan fluida kerjanya yang wujudnya diubah-ubah.
Sistem penggerak mula tersebut terdiri dari unit-unit pembangkit uap (boiler), pemanas Ianjut uap (super heater), turbin uap (steam turbine), generator and kondensor. Air pertama kali masuk dari bak penampung dipompakan ke dalam bolier untuk dipanaskan and berubah menjadi bentuk uap. Uap ini kemudian dialirkan ke dalam super heater and keluar sebagai uap super panas. Uap super panas ini kemudian masuk ke dalam turbin uap melalui nosel and menumbuk sudu-sudu turbin sehingga berputaran pada kecepatan tertentu. Sudu-sudu turbin yang berpegangan pada poros yang dikopel dengan generator menyebabkan generator bekerja mengubah energi putaran menjadi energi listrik. Kemudian uap bekas tadi dialirkan masuk ke dalam kondensor and dikondensasikan sehingga wujudnya kembali menjadi cair dan siap dioperasikan Iagi.
Sistem penggerak mula yang diujikan merupakan miniatur dari sistem penggerak mula yang biasanya digunakan. Pengujian yang dilakukan merupakan pengukuran pada unit-unit yang terdapat dalam sistem tersebut untuk mengetahui unjuk kerja pada unit turbin uap. Analisanya merupakan hasil perhitungan unjuk kerja dan perbandingan faktor-faktor yang mempengaruhi unjuk kerja terhadap putaran 1000 rpm, 1500 rpm, 2000 rpm, 2500 rpm, 3000 rpm dan terhadap temperatur masuk turbin.

In this globalitation era, electricity is one of the most needed supply by mankind. ln every days life even the industry is needing the electricity as the energy source. To get the this electric energy, it has been created a basic system called steam power generator. The system work using the water as the potencial energy and transform it to be useable electric energy. Water is the fluid of the system (machine) and it's appearing is changes. The steam power generator is supported by some other units. The supported units are boiler, super heater, steam turbine, generator and condensor. Water is pump from the reservoir into boiler to be heat up and blown into super heater and changes to be a super heats. The super heats blown into the steam turbine through the nozzle and get pushed then crash the turbine's blades so it's purpousely rotate into a particular speed. Then the turbine's blades are held by shaft which is couple with the generator causing the generator on and transform the rotation energy into electrical energy. The exhaust gas blown into the condensor to get condensate and change to be a water then ready to operate again.
The steam power generator which is tested, is the miniature of the steam power generator which is commonl use. The test which was held is the efficiency measurement of the units inside the system to know the efficiency of steam turbin unit. The factors which affect the efficiency versus rotation 1000 rpm, 1500 rpm, 2000 rpm, 2500 rpm,3000 rpm and versus turbine input temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2001
S37640
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>